

NORTH AMERICAN EDITION

Selection Guide	2-5
Markets and Applications	6-8
Principles of Rotary Encoders	9-16
Incremental Rotary Encoders	17-46
Absolute Rotary Encoders	47-98
Accessories	99-107
Appendix	108-111
Model Number Index	112

Incremental Rotary

100 kHz

0.5 m or 2 m

shielded cable

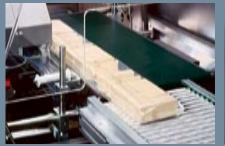
IP54

Max. Output Frequency

Connection Type

Protection Rating

Machine tools use rotary encoders to precisely control cutters or to position indexing tables.


100 kHz

MS connector or

shielded cable

IP54 or IP65

Elevators use rotary encoders to determine what floor they are on and to level the elevator car when the door opens.

100 kHz

0.5 m or 2 m

shielded cable

IP40 or IP54

160 kHz

12-pin connector or

0.5 m shielded cable

IP50

Conveyors have rotary encoders built into them to track the speed and distance of objects moving on the conveyor and to position items for additional work.

200 kHz

12-pin connector or

1 m shielded cable

IP65

100 kHz

0.5 m or 2 m

shielded cable

IP54

Robotics use rotary encoders to provide critical data on tool location and actuator movement.

^{*} Shaft load ratings based on bearing lifetime of 108 revolutions. Reduced shaft loads will increase bearing life. See individual data sheets for more information.

Typical Applications:

- Machine tools
- Printing presses
- Packaging machines
- Conveyors
- Elevators
- Robotics
- Wind generators
- Overhead cranes

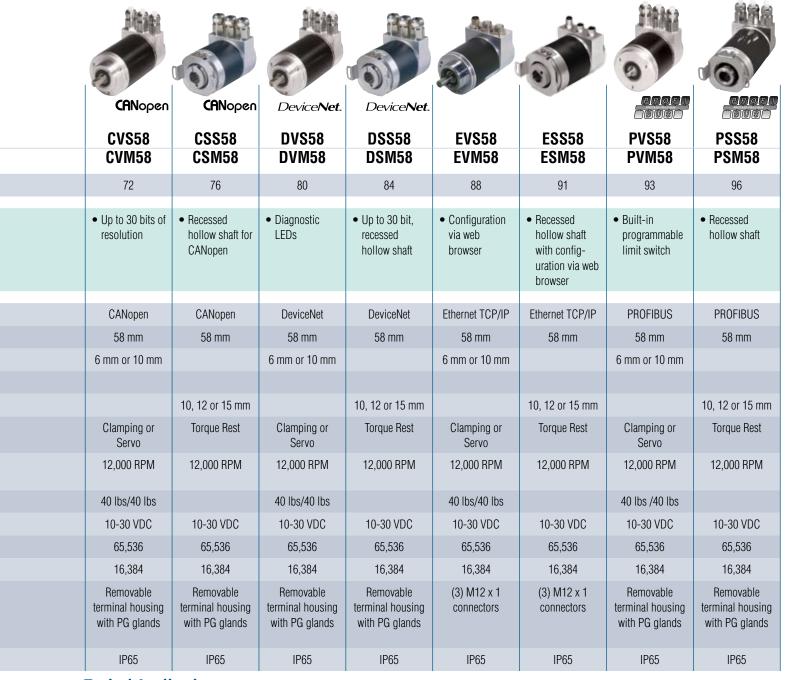
Want more information?

Simply go to: www.trustpf.com/encoder

ABSOLUTE ROTARY ENCODERS

Absolute Rotary Encoders

Liicodeis				5	ASI	ASI	
Single-Turn	FVS58	FSS58	AVS58	ASS58	BVS58	BSS58	
Multi-Turn	FVM58	FSM58	AVM58	ASM58	BVM58	BSM58	
See Page	48	52	56	60	64	68	
Highlights	Parallel output	 Recessed hollow shaft with parallel output 	• Up to 28 bits of resolution	Recessed hollow shaft up to 28 bits	AS-Interface encoder utilizes up to 16 slave addresses	Recessed hollow shaft	
Interface	Parallel	Parallel	SSI	SSI	AS-Interface	AS-Interface	
Diameter	58 mm	58 mm	58 mm	58 mm	58 mm	58 mm	
Solid Shaft Diameter	6 mm or 10 mm		6 mm or 10 mm		6 mm or 10 mm		
Hollow Shaft							
Recessed Hollow Shaft		10, 12 or 15 mm		10 mm or 12 mm		10 mm or 12 mm	
Flange Type	Clamping or Servo	Torque Rest	Clamping or Servo	Torque Rest	Clamping or Servo	Straight Pin Torque Rest	
Max. Shaft Speed	12,000 RPM	12,000 RPM	12,000 RPM	12,000 RPM	12,000 RPM/ 6,000 RPM	10,000 RPM/ 6,000 RPM	
Max. Shaft Load Axial Radial*	40 lbs/40 lbs		40 lbs/40 lbs		40 lbs/40 lbs		
Operating Voltage	10-30 VDC	10-30 VDC	10-30 VDC	10-30 VDC	from AS-Interface	from AS-Interface	
Max. Single-Turn Resolution	8,192	8,192	65,536	65,536	8,192	8,192	
Max. Multi-Turn Resolution	4,096	4,096	16,384	16,384	4,096	4,096	
Connection Type	19-pin connector, 26-pin connector, or 2 m shielded cable	19-pin connector, 26-pin connector or 2 m shielded cable	12-pin connector or 1 m shielded cable	12-pin connector or 1 m shielded cable	4-pin micro DC connector	4-pin micro DC connector	
Protection Rating	IP65	IP65	IP65	IP65	IP65	IP65	


Overhead cranes are positioned by rotary encoders, which also measure crane speed to prevent accidents and overruns.

Wind generators have adjustable vanes to take advantage of any wind, no matter how slight, and rotary encoders make it possible.

Packaging machines measure the size of an item and track the amount of material used to pack it with rotary encoders.

Printing presses track the amount of paper on a roll and measure where to cut using rotary encoders.

4

Typical Applications:

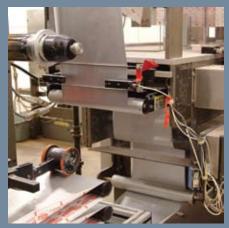

- Machine tools
- Printing presses
- Packaging machines
- Conveyors
- Elevators
- Robotics
- Wind generators
- Overhead cranes

Want more information?

Simply go to: www.trustpf.com/encoder

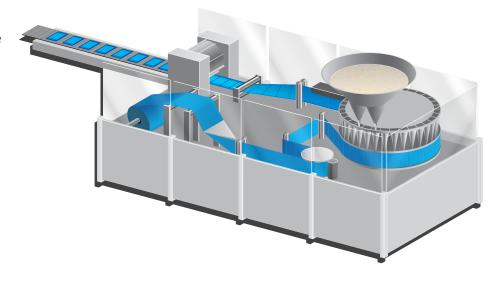
Rotary Encoders for the Material Handling Industry

Material Handling


In a world of continuous movement, material handling links many diverse pieces of equipment. Applications demand outstanding rotary sensor performance: absolute position verification and speed monitoring. With our experience in material handling techniques, you can be confident that Pepperl+Fuchs provides solutions for your entire operation with products that nobody else can match.

- Pallet and container positioning
- Position of stacker and gantry cranes
- Hoist monitoring
- Forklift speed/ direction monitoring

Rotary Encoders for the Packaging Industry



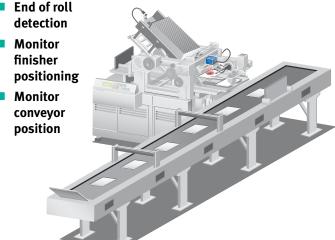
Packaging

From level control, to empty pouch detection, to glue pattern verification, you want rugged and reliable sensors with precise positioning and ultrafast response

times that offer quick changeover times on the plant floor. When speed, accuracy and reliability are vital, Pepperl+Fuchs is the only sensor supplier you'll ever need.

- Precise product positioning
- Measure roll diameter
- Low roll detection
- Measure item size
- Verify material length
- Cut-to-length measurement
- Monitor conveyor speed & distance

Rotary Encoders for the Printing and Elevator/Escalator Industry



Printing

Pepperl+Fuchs knows printing: every segment, every step in the process. In the printing industry, sensors need to be robust, versatile enough to perform in a variety of machines, and rugged enough to withstand vigorous plant floor environments. P+F has those sensors. In fact, we have the largest and most diverse selection of sensing technologies in the world. P+F is expanding the limits of sensing technology.

- Measure roll diameter
- Web measurement and alignment
- Monitor sheet length

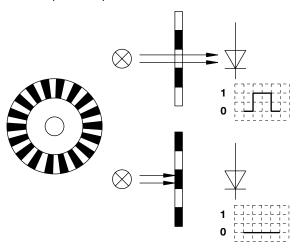
Doors, Gates, Elevators & Escalators

Pepperl+Fuchs has been a trusted sensor supplier to the elevator/escalator industry for over 25 years. Developed to optimize performance and minimize downtime, our encoders are used to monitor critical speed, synchronization, and absolute positioning.

Offering proven solutions, Pepperl+Fuchs has the experience you've come to trust in both industrial and commercial applications.

- Door positioning
- Cab positioning
- Handrail-to-stair synchronization
- **Rotation direction** monitoring
- Slip monitoring

Rotary Encoders


Principles of Rotary Encoders 10-16
Introduction 10
Types of Encoders10
Encoder Design11-12
Mounting Instructions12
Installation Instructions 13
Safety Instructions13
Operating Instructions for
Incremental Rotary Encoders14-15
Operating Instructions for
Absolute Rotary Encoders 16
Intrinsically Safe Devices 16
Incremental Rotary Encoders 17-46
RVI25 Series18-19
TVI40 Series20-21
TVI50 Series22-23
RVI50 Series24-25
TVI58 Series26-27
RVI58 Series28-29
TSI40 Series30-31
THI58 Series32-33
RHI58 Series34-35
RSI58 Series36-37
RHI90 Series38-39
Series 3040-41
RVI78 Series42-43
RVI84 Series44-45

Ab :	solute Rotary Encoders	47-98
	FVS58/FVM58 Series	48-51
	FSS58/FSM58 Series	52-55
	AVS58/AVM58 Series	56-59
	ASS58/ASM58 Series	60-63
	BVS58/BVM58 Series	64-67
	BSS58/BSM58 Series	68-71
	CVS58/CVM58 Series	72-75
	CSS58/CSM58 Series	76-79
	DVS58/DVM58 Series	80-83
	DSS58/DSM58 Series	84-87
	EVS58/EVM58 Series	88-90
	ESS58/ESM58 Series	91-92
	PVS58/PVM58 Series	93-95
	PSS58/PSM58 Series	96-98
Acc	cessories	99-107
	Connectors and Cordsets	100
	Synchro Clamping Elements	101
	Mounting Brackets	101-102
	Couplings	103
	Measuring Wheels	104
	Cable Pulls	. 105-107
\ p	pendix	. 108-112
	Glossary	108-109
	IP Ratings	
	Warranty Info and Registration	
	Model Number Index	112

Introduction

In automation applications, rotary encoders are used as sensors for angle, position, speed and acceleration. By using spindles, gear racks, measuring wheels or cable pulls, linear movements can also be monitored by a rotary encoder. Rotary encoders convert a mechanical rotation value into an electrical signal that can be processed by counters, tachometers, logic controllers and industrial PCs.

Rotary encoders use a glass or plastic disc with alternating transparent and opaque fields, with a light source on one side and a light-sensitive sensor on the other. As the disc rotates, the light source is alternately blocked and revealed to the sensor. Whenever the light source hits the sensor, the encoder transmits an electric pulse that can be interpreted by a controller. The pulse ends when an opaque field on the disc blocks the light source. Rotation of the disc results in a square-wave pulse output.

Most rotary encoders use an infrared light-emitting diode as a light source, and photodiodes or phototransistors as receivers.

If no other functions are added to the encoder, the only output is a square wave that indicates that the disc is rotating. The direction of rotation and absolute position cannot be determined from a square wave output alone. Therefore, additional components are added to many rotary encoders to provide additional data about the rotation.

Types of Encoders

Incremental Rotary Encoders

Incremental rotary encoders supply a certain number of pulses for each shaft revolution. Measuring the cycle duration, or counting the number of pulses during a pre-determined unit of time determines rotational speed. If the pulses are measured after a reference point is added, the calculated value represents a parameter for a scanned angle or the distance covered.

Two-channel encoders (those with a phase shift of 90°) enable the controller to determine the direction of rotation and can enable bi-directional positioning. Three-channel incremental encoders provide a "zero signal" for each revolution, giving a fixed point of reference.

For more information, please refer to the section titled "Operating Instructions for Incremental Rotary Encoders" on pages 14-15.

Absolute Rotary Encoders

Absolute encoders provide a uniquely coded numerical value for each shaft position. Absolute rotary encoders eliminate the need for expensive input components in a positioning application because they have built-in reference data. In addition, reference runs after a power failure or when the machine is switched off are not required because the encoder provides the current position value immediately.

Single-turn absolute encoders divide the shaft into a defined number of steps. The maximum resolution is 16 bits, which means that up to 65,536 positions can be defined.

By using a multi-step gear, multi-turn absolute encoders not only provide the angular position within a revolution, but also the number of revolutions. Multi-turn encoders have a 14-bit resolution to indicate the number of turns, which means that up to 16,384 revolutions can be identified. Overall resolution is 30 bits (16 bits per turn + 14 bits for the number of turns) or 1,073,741,824 measuring steps.

Parallel absolute encoders transmit the position value to external analyzing electronics through multiple wires, one for each bit.

In the case of serial absolute encoders, the output data can be transmitted by means of standardized interfaces and protocols. In the past, point-to-point wiring was used for serial data; today, fieldbus systems are becoming increasingly popular.

For more information on encoder operation, please refer to the section titled "Operating Instructions for Absolute Encoders" on page 16.

Encoder Design

Solid Shaft Encoders

Solid shaft encoders feature a solid drive shaft that must use an additional coupling to link the encoder shaft to the application's drive shaft. The spring-based coupling compensates for misalignment. Belts, pinions, measuring wheels and cable pulls can also be mounted to the solid drive shaft. Depending on the type of coupling used, it is important to observe the maximum shaft load, since excessively high radial or axial forces can damage the encoder.

Advantages of solid shaft encoders:

- Simple construction
- Higher environmental protection rating
- Can be mechanically and electronically disengaged from the application, depending on coupling

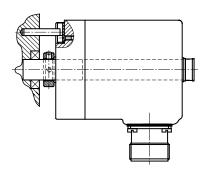
Clamping Flange

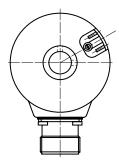
The encoder can be mounted using the clamping flange, which ensures that the rotational axis is centered. The threaded holes on the encoder face can also be used.

Servo Flange (synchro flange)

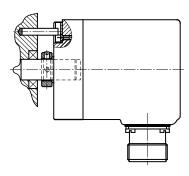
The encoder can be mounted using the synchro groove with mounting components, by using the threaded holes on the encoder face, or by using a mounting bracket.

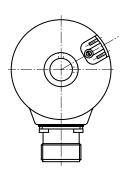
Hollow Shaft Encoders


Hollow shaft encoders use a continuous borehole or a blind hole (recessed hollow shaft encoder) which houses the drive shaft. Integrated hub and shaft connections make linking the encoder and the drive simple and easy. Built-in torque rests compensate for axial misalignment of the encoder and drive, making a compensating coupling unnecessary.



With hollow shaft encoders, the shaft and hub connection is already integrated, but it is vital to mount the encoder so that the correct torque is transmitted to the drive shaft and not to the body of the encoder. Typically, hollow shaft encoders are mounted in such a way that the weight of the encoder is placed on the drive shaft, while a pin securing the body of the encoder prevents it from rotating around the drive shaft as torque is applied. Encoder motion should not be restricted in any other way, as it could affect the accuracy of the encoder.


Recessed hollow shaft encoders are identical in all ways to standard hollow shaft encoders except that the hole is bored only partly through the encoder housing. Mounting techniques for recessed encoders are also the same.


Hollow shaft encoder

Recessed hollow shaft encoder

Advantages of hollow shaft encoders:

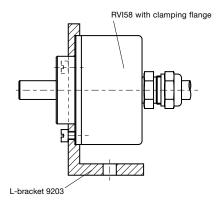
- Simple mounting
- · Quick installation

Shaft Load

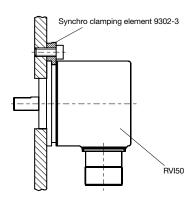
Pepperl+Fuchs encoder shafts are mounted using two ball bearings. The encoder's service life is directly dependent upon the bearing's structural integrity, which is, in turn, dependent upon five main components:

- Speed
- Temperature
- Axial load
- Radial load
- Load location (on the shaft)

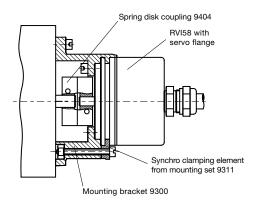
Pepperl+Fuchs specifies maximum encoder shaft loading and bearing service life based upon "worst case" permissible conditions (i.e. maximum speed, temperature and shaft forces, where the load is centered/applied on the shaft end).


With proper encoder mounting and selection of shaft couplings, P+F encoders will provide a service life beyond the stated value. Conversely, if mechanical loading is increased beyond the catalog-specified limits, an encoder's working life will be reduced.

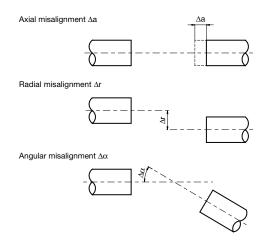
Example: At 6,000 rpm, with axial and radial shaft loads of 40 lbs, the RVI25's specified service life is 2×10^8 revolutions. If the axial and radial shaft loads are reduced to 13 lbs and 9 lbs respectively, the guaranteed service life increases to 2×10^{10} revolutions.


Mounting Instructions

Mounting Encoders


Mounting a solid shaft encoder using an L-bracket

Mounting a solid shaft encoder using an eccentric clamp


Mounting a solid shaft encoder with a mounting bracket

Use of Couplings

To prevent excessive loads on the encoder bearings, the encoder and drive shaft must be linked with a flexible coupling. Without a flexible coupling, slight misalignment of the encoder and drive shaft or changes in alignment due to temperature fluctuation can generate excessive axial or radial forces. In a rigidly mounted system, this can destroy the encoder. However, a coupling with high torsional rigidity will reduce the torsional error between the encoder and drive shaft.

For data on maximum radial, axial or angular misalignment, please refer to the encoder data sheets.

Installation Instructions

Anti-interference Measures

Because of the sensitive nature of today's electronics, a consistently applied anti-interference and wiring protocol should be designed into any encoder system. The following procedures should be followed whenever mounting an encoder in a normal industrial environment (please note that no two environments are the same—if you have questions, please contact your local P+F representative for a detailed analysis of your application).

- Terminate a serial line with a 120Ω resistor at the controller and the last encoder in the loop. The resistor should be installed between the Receive/Transmit terminals.
- Keep encoder wiring away from power cables and conduit.
 If crossing power cables is necessary, make sure the wires are perpendicular, not parallel.
- Make sure your cable's shield has a cross section of at least 12 AWG (4 mm²).
- Make sure your cable's wire has a cross section of at least 26 AWG (0.14 mm²).
- Do not kink or bend the cables.
- Do not exceed the minimum bending radius as shown on the cable data sheet. Avoid tensile and shearing loads on the cable.

Operating Instructions

Every encoder manufactured by Pepperl+Fuchs is tested before leaving the factory. To ensure continued operation, please observe the following precautions:

- Do not strike or hammer on the encoder housing or shaft.
- Do not overload the encoder shaft, either axially or radially.
- The accuracy and service life of the encoder is guaranteed only if a suitable coupling is used.
- Power to the encoder and controller must be applied at the same time.
- Do not service wiring with power applied to the system
- · Do not exceed maximum operating voltage.

Notes on Electrical Shielding

- Apply shielding on both sides to a common ground.
- The shield has to be installed behind the insulation and must be clamped to a large surface below the strain relief.
- With screw-type cable connections, the strain relief must be grounded.
- Use only metallic plugs (such as sub-D plugs with metallic housings).

Safety Instructions

Please observe the national safety and accident prevention regulations as well as the subsequent safety instructions in these operating instructions when working on encoders.

If failures cannot be remedied, the device must be shut down and secured against accidental operation.

Repairs may be carried out only by the manufacturer.

Entry into and modifications of the device are not permissible.

Tighten the clamping ring only, if a shaft has been fitted in the area of the clamping ring (hollow shaft encoders).

Tighten all screws and plug connectors prior to operating the encoder.

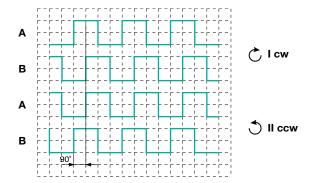
Do not stand on the encoder!

Do not remachine the drive shaft!

Avoid impact!

Do not remachine the housing!

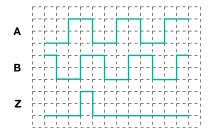
Operating Instructions for Incremental Rotary Encoders


Incremental rotary encoders emit pulses as the shaft is rotated, and the number of pulses is used to calculate angular position. The resolution (Z) of an incremental encoder is the number of pulses per revolution. The signal frequency is used to determine the angular speed (ω) and the change in position for a given period of time is used to calculate the angular acceleration (α).

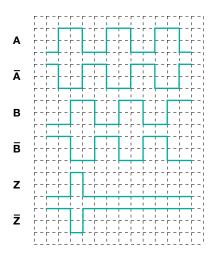
Rotational Direction Monitoring in Incremental Rotary Encoders

In order to determine the direction of rotation of a movement, the scanning principle is used on both channel A and channel B. The direction of rotation can be determined by evaluating the two signals, which are phase-shifted by 90 degrees.

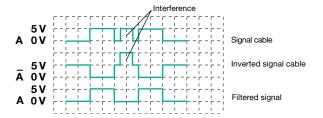
In the first figure below (I cw), channel A precedes channel B. This indicates clockwise rotation. II ccw shows counter-clockwise rotation. The direction of rotation is determined by viewing the encoder shaft head-on.


Depending on the type of incremental rotary encoder, channel A or channel B is the leading channel. For more information, refer to the encoder data sheet.

Zero Signal


Determining the frequency of the pulses is the job of the controller, PLC or tachometer. The zero signal is a pulse that occurs once per revolution at a fixed point and is transmitted using a third channel (often called channel 0 or Z). The zero signal is usually used as a reference signal for positioning.

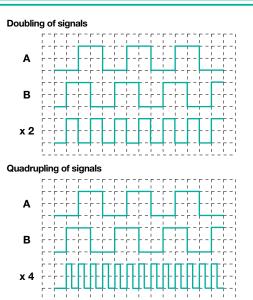
The diagram below illustrates the output of a 3-channel incremental rotary encoder.



Inverted Channels

Inverted signals are transmitted in addition to channels A, B and Z to improve signal quality. Inverted signals are a standard feature in RS-422 interfaces and are optional on push-pull outputs.

The advantage of normal and inverted signal transmissions is that filtering of unwanted signals is possible. If a noise pulse occurs, it will be induced equally on all channels. Subtracting the normal and inverted encoder signals from each other eliminates the noise pulse. The figure below illustrates how this is done.

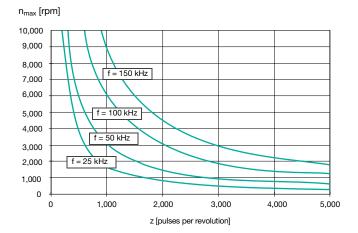


Pulse Multiplication

Pulse multiplication is used to increase the number of measuring steps or to reduce the output frequency of an incremental rotary encoder. The signals of an incremental rotary encoder can be doubled or quadrupled by linking channels A and B.

For example, an application may need 20,000 measuring steps for each revolution at a speed of 3000 RPM. If the control unit (PLC, counter or tachometer) provides the option to quadruple the signal, then an inexpensive rotary encoder with 5000 pulses can be used. In addition, the output frequency of the incremental rotary encoder is reduced.

- Without quadruple multiplication: 1 MHz (this frequency is too high for most control units)
- With quadruple multiplication: 250 kHz

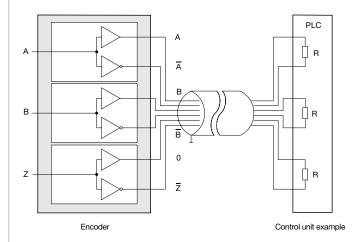


NOTE: By linking channels A and B, rotation direction data is lost.

Relationship Between Speed and Output Frequency

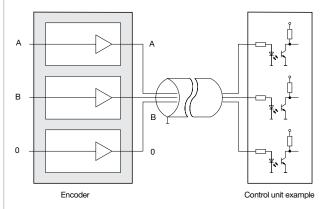
$$f = \frac{n}{60 \text{ s}} \times Z \qquad \text{(n in rpm)}$$

$$n_{\text{max}} = \frac{n_{\text{max}} \times 60 \text{ s}}{7} \qquad \text{(f}_{\text{max}} \text{ in Hz, } n_{\text{max}} \text{ in rpm)}$$



Interfaces

Line Driver (RS-422)


This symmetrical interface is recommended for use whenever a longer cable length is required. The corresponding core pairs must be twisted for maximum interference resistance.

This interface can also be used as a replacement for the TTL interface. In this case, the inverted outputs are not used.

Push-Pull Output

The push-pull output is a combination of NPN and PNP outputs. Compared to open collector outputs, the push-pull output features an improved square wave. In addition, interference resistance is improved. No external wiring is required as in NPN or PNP outputs. Push-pull also offers inverted channels. The main applications of push-pull are within the range of median switching frequencies. The open collector outputs can be replaced by push-pull by using only the non-inverted outputs.

Operating Instructions for Absolute Rotary Encoders

Absolute encoders do not generate pulses, but entire data strings. The sampling unit in an absolute encoder reads the code disk to determine the shaft position and the data is transmitted by parallel or serial interface.

Single-turn

In single-turn absolute rotary encoders, each revolution of the encoder (360°) is divided into a maximum of 65,536 measuring steps (16 bit). After each complete revolution, the count begins again at the initial value. A single turn absolute rotary encoder does not count the number of revolutions.

Multi-turn

In addition to the coded disk in a single-turn encoder, a multiturn encoder adds a gear that counts up to 16,384 revolutions (14 bit). Overall resolution amounts to 16 bit (single-turn resolution) plus 14 bit (multi-turn resolution) for a total of 30 bits of resolution. The resulting 1,073,741,824 measuring steps can be used to divide very long linear distances into small measuring steps.

Interfaces

The Pepperl+Fuchs encoder line includes the industry's largest range of interfaces for absolute encoders:

SSI-Interface:

The Synchronous Serial Interface (SSI) has been developed to transfer output data to a controller. The controller sends a bundle of timer pulses and the absolute encoder responds with the position value.

Parallel Interface:

With a parallel interface, data is sent directly from the Graycoded encoder measurement. A parallel interface's primary advantage is data transfer speed.

AS-Interface:

AS-Interface uses a multi-slave solution to provide real-time encoder data transfer.

DeviceNet:

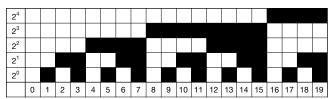
Encoders are available with fully integrated DeviceNet interfaces that support all DeviceNet functions.

PROFIBLIS:

PROFIBUS operation is supported in accordance with Class 1 and Class 2, and satisfies the PROFIBUS profile for encoders.

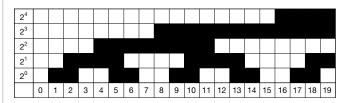
CAN:

Pepperl+Fuchs offers encoders with a recessed hollow shaft and solid shaft design in single- and multi-turn versions. Each model is in accordance with the CAN standard DSP406 (Class 1 and Class 2).


Ethernet:

These encoders are available with Ethernet TCP/IP interface. The Ethernet interface is programmable via any web browser.

Types of Code


Binary Code

Binary code is a dual number system, consisting of the numbers 0 and 1. When using binary code, it is important to note that several bits may change at the same time from step to step. For example, counting from seven to eight, the bits 0, 1, 2 and 3 change. In order to ensure high transmission integrity, P+F recommends using a code which changes only one bit at each step. The evaluating control can then be used to determine whether the data string is accurate.

Gray Code

Gray code is a unit-distance code; only one bit changes from step to step. To use this code for distance calculation, it must be converted to a binary code. Gray code is recommended for encoders because the data can be transmitted by a serial interface. To check the unit-distance, every code change has to be detected by the test logic.

Gray Excess Code

The Gray excess code is extracted from the complete Gray code. In the process, clipping takes place symmetrically, permitting the use of even sections only. The idea is that a different number of measuring steps other than those given by a power of 2 can be used. Frequently it is necessary to reduce a 9-bit value (512 measuring steps) to 360 measuring steps. The unit distance remains unaffected.

Intrinsic Safety Devices

Ignition Protection Class "Intrinsic Safety" (EEx i) DIN EN 50020

By using the latest technology, it is possible to incorporate a binary switching behavior in the sensor (with simultaneous switch condition change on the sensor and amplifier), while retaining the standardized voltage and current values. The characteristic values of voltage and current are kept so low that a NAMUR sensor can be used in an explosive area (ignition protection class "Intrinsic safety").

NAMUR sensors are mounted to external amplifiers which convert the current changes into a binary output signal. P+F offers a large number of amplifiers for intrinsic safety applications.

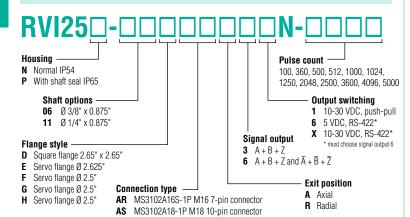
NAMUR Sensors, Two-wire

NAMUR sensors in accordance with IEC 60947-5-6 are two-wire sensors.

Incremental Rotary Encoders

RVI25 Series	2.5" Housing, Solid Shaft
TVI40 Series	40 mm Housing, Solid Shaft
TVI50 Series	50 mm Housing, Solid Shaft
RVI50 Series	50 mm Housing, Solid Shaft
TVI58 Series	58 mm Housing, Solid Shaft
RVI58 Series	58 mm Housing, Solid Shaft
TSI40 Series	40 mm Housing, Recessed Hollow Shaft 30-3
THI58 Series	58 mm Housing, Hollow Shaft
RHI58 Series	58 mm Housing, Hollow Shaft
RSI58 Series	58 mm Housing, Recessed Hollow Shaft 36-3
RHI90 Series	87 mm Housing, Hollow Shaft
Series 30	90 mm Housing, Solid Shaft
RVI78 Series	78 mm Housing, Solid Shaft
RVI84 Series	78 mm Housing, Solid Shaft

RVI25 Series Solid Shaft


- Outputs up to 5000 ppr
- Square or servo flange styles
- Mil-Spec connectors
- Heavy-duty size 25 housing (2.5")
- 10-30 VDC and 5 VDC outputs
- 1/4" or 3/8" diameter shafts

The RVI25 series is Pepperl+Fuchs' industry standard size 25 (2.5") encoder. This encoder is well-suited for many applications with its rugged, industrial housing and variety of options. Standard mounting configurations include 1/4" and 3/8" shafts and servo or face mounts. Electrical options include push-pull and RS-422 outputs with either Mil-Spec connectors or cables. An optional shaft seal protects the encoder and gives it a protection rating of IP65.

Order Code

Example: RVI25N-06DK2R61N-1024

Cable 2 m Cable 5 m

Technical Specifications

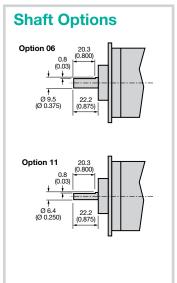
Electrical

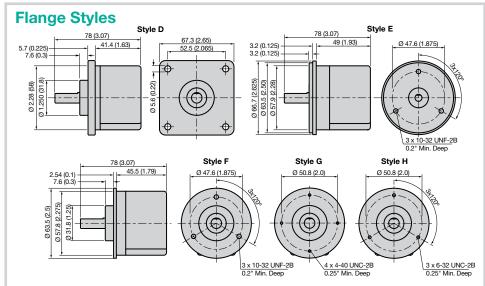
PULSE COUNT		≤ 5,000 ppr
OUTPUT FREQUENCY		≤ 100 kHz
SUPPLY VOLTAGE		10-30 VDC 5 VDC
OUTPUT		10-30 VDC, push-pull 10-30 VDC, RS-422 5 VDC, RS-422
CURRENT	10-30 VDC	≤ 60 mA
CONSUMPTION	5 VDC	≤ 70 mA
LOAD CURRENT PER CHANNEL	Push-pull	\leq 40 mA, short-circuit protected
	RS-422	≤ 20 mA
VOLTAGE DROP	Push-pull	< 3 V
	RS-422	_
RESPONSE TIME Push-pull		400 ns
	RS-422	100 ns
CERTIFICATES	c UL us	No. NMTR.E223176
C€		Yes

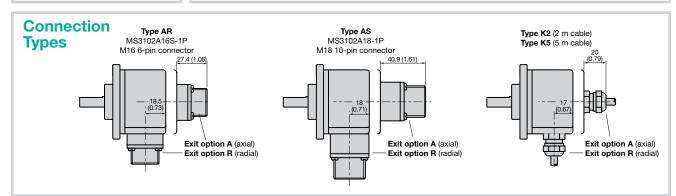
Mechanical

MATERIAL	Housing	Die-cast zinc	
	Flange	Aluminum	
	Shaft	Stainless steel	
	Pulse disc	Plastic (0-1,500 ppr)	
		Glass (1,501-5,000 ppr)	
WEIGHT		≈ 14 oz	
ROTATIONAL SPEED		≤ 12,000 rpm	
MOMENT OF INERT	ΊΑ	≤ 3.5 x 10 ⁻⁴ oz-in-sec ²	
STARTING	w/shaft seal	≤ 2.1 in-oz	
TORQUE AT 20°C	vo/shaft seal	≤ 1.4 in-oz	
SHAFT	Axial	40/9.8 lbs (6,000/12,000 rpm)	
LOADING	Radial	40/13.3 lbs (6,000/12,000 rpm)	
BEARING WORKING	LIFE	> 2 x 10 ⁸ revolutions	

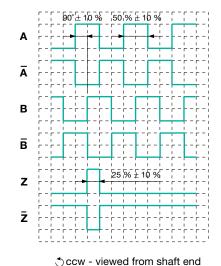
Environmental


STORAGE	Plastic disc	-40°C to +70°C (-40°F to +158°F)	
TEMPERATURE	Glass disc	-40°C to +100°C (-40°F to +212°F)	
OPERATING	Plastic disc	-20°C to +60°C (-4°F to +140°F)	
TEMPERATURE	Glass disc	-20°C to +80°C (-4°F to +170°F)	
HUMIDITY		No moisture condensation	
SHOCK RESISTANCE		100 g for 3 ms	
VIBRATION RESISTANCE		10 g, 10-2,000 Hz	
ENCLOSURE	w/shaft seal	IP54	
RATING	wo/shaft seal	IP65	


CONNECTOR	Type MS3102A16S-1P, 7-pin Type MS3102A18-1P, 10-pin
CABLE	Ø7.8 mm, 12 x #26 AWG, 2 or 5 m length


Incremental Rotary Encoders

Dimensions

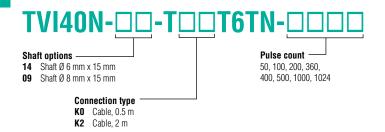

mm (in.)

Output Waveform

Electrical Connection

Signal	AR M16 7-pin MS3102A16S-1P quick disconnect	AS M18 10-pin MS3102A18-1P quick disconnect	K2 or K5 12-conductor cable, Ø 7.8 mm
Power Source U _B	D	D	Brown
Common	F	F	White
Case	G	G	Shield
Α	Α	Α	Green
В	В	В	Gray
Z	O	С	Blue
Ā	-	Н	Yellow
B	-	I	Pink
Z	-	J	Red
No Connection	Е	Е	Gray/Pink
GND Sens*	-	-	Black
U _B Sens*	-	ı	Violet
	F A B	G H A I B B C C	

*Only for devices with 5 V supply and RS-422 interface


TVI40 Series Solid Shaft

- Smallest incremental encoder size
- 6 mm and 8 mm shaft diameters
- Outputs up to 1024 ppr
- RS-422 functionality at 5 V operation
- IP54

With a small outside diameter of 40 mm, the solid-shaft TVI40 is ideal for use in industrial areas where very little space is available. Electrical options include push-pull and RS-422 outputs. Opto-ASIC technology and a sturdy metal code disk provide a more efficient and economical performance. The TVI40 comes in a 40 mm plastic housing with a tangential cable outlet, which enables the user to lay the cable radially or axially.

Order Code

Example: TVI40-TK0T6TN-1024

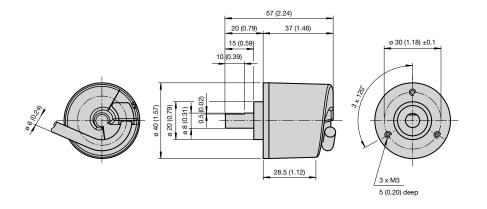
Technical Specifications

Electrical

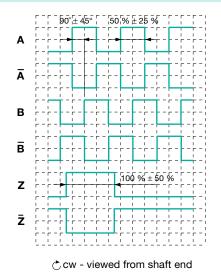
PULSE COUNT	≤ 1,024 ppr	
OUTPUT FREQUENCY	≤ 100 kHz	
SUPPLY VOLTAGE	4.75-30 VDC	
	5 VDC for RS-422 functionality	
OUTPUT	Push-pull (RS-422)	
CURRENT CONSUMPTION	≤ 55 mA	
LOAD CURRENT PER CHANNEL	≤ 30 mA	
VOLTAGE DROP	≤ 2.5 V	
RESPONSE TIME	980 ns (225 ns)	
CERTIFICATES . ULus	No. NMTR.E223176	
C€	Yes	

Mechanical

MATERIAL	Housing	Polycarbonate	
	Flange	Aluminum	
	Shaft	Stainless steel	
	Pulse disc	Nickel	
WEIGHT		≈ 5.8 oz	
ROTATIONAL SPEE	D	≤ 6,000 rpm	
MOMENT OF INERTIA		\leq 6.1 x 10 ⁻⁵ oz-in-sec ²	
STARTING TORQUE	AT 20°C	≤ 0.3 in-oz	
SHAFT	Axial	4.5 lbs	
LOADING	Radial	6.7 lbs	
BEARING WORKING LIFE		≥ 2 x 10 ⁹ revolutions	


Environmental

STORAGE TEMPERATURE	-25°C to +85°C (-13°F to +185°F)
OPERATING TEMPERATURE	-10°C to +70°C (-14°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP54


CABLE	Ø6 mm, 8 x #26 AWG,
	0.5 m or 2 m length

Dimensions

mm (in.)

Output Waveform

Electrical Connection

Signal	Ø 6 mm cable
Power Source U _B	Brown
GND	Blue
Α	Black
В	White
Z	Orange
Ā	Violet
B	Gray
Z	Yellow

TVI50 Series Solid Shaft

- Outputs up to 1024 ppr
- RS-422 functionality at 5 V
- Withstands higher shaft loads
- Sturdy and compact design
- 4.75 V to 30 V with short-circuit proof, push-pull output

The cost-effective TVI50 has an aluminum housing with an outside diameter of 50 mm; ideal for smaller spaces. It is insensitive to ambient temperature changes and is useful in applications that require high resolution. The TVI50 comes with Opto-ASIC technology and a sturdy metal code disk that withstands higher shaft loading.

Order Code

Example: TVI50N-09BK0A6TN-1024

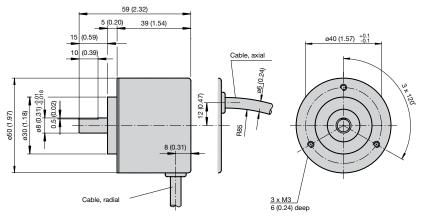
Technical Specifications

Electrical

PULSE COUNT	≤ 1,024 ppr
OUTPUT FREQUENCY	≤ 100 kHz
SUPPLY VOLTAGE	4.75-30 VDC
	5 VDC for RS-422 functionality
OUTPUT	Push-pull (RS-422)
CURRENT CONSUMPTION	≤ 55 mA
LOAD CURRENT PER CHANNEL	≤ 30 mA
VOLTAGE DROP	≤ 2.5 V
RESPONSE TIME	980 ns (225 ns)
CERTIFICATES . ULus	No. NMTR.E223176
C€	Yes

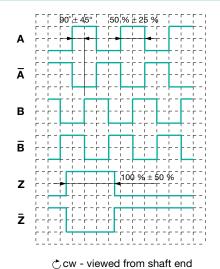
Mechanical

		A1 '
MATERIAL	Housing	Aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Nickel
WEIGHT		≈ 7.8 oz
ROTATIONAL SPEEL		≤ 6,000 rpm
MOMENT OF INERT	ΊΑ	$\leq 7.1 \text{ x } 10^{-5} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 0.7 in-oz
SHAFT	Axial	4.5 lbs
LOADING	Radial	9.0 lbs
BEARING WORKING	LIFE	≥ 2 x 10 ⁹ revolutions


Environmental

STORAGE TEMPERATURE	-40°C to +80°C (-40°F to +176°F)
OPERATING TEMPERATURE	-10°C to +70°C (-14°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE Without shaft seal	IP40
RATING With shaft seal	IP54

CABLE	Ø6 mm, 8 x #26 AWG,
	0.5 m or 2 m length


Dimensions

mm (in.)

Clamping flange

Output Waveform

Electrical Connection

Signal	Ø 6 mm cable
Power Source U _B	Brown
GND	Blue
Α	Black
В	White
Z	Orange
Ā	Violet
B	Gray
Z	Yellow

RVI50 Series Solid Shaft

- Compact 50 mm diameter housing
- Outputs up to 2500 ppr
- 160 kHz maximum output frequency
- Push-pull or RS-422 outputs
- 8 mm diameter shaft

Series RVI50 encoders are a streamlined alternative to standard 58 mm models. At just 50 mm, the compact housing fits into tight spaces, yet is rugged enough for the toughest application. Standard models are available with either a cable or round connector. Either 3 or 6 outputs are available with a maximum frequency of 160 kHz for high-speed applications.

Order Code

RVI50N-09B

Connection type, exit position, signal output, output switching

AAA3T Connector type 9416, 12-pin, axial, A + B + Z, 4.75-30 VDC, push-pull AAA66

Connector type 9416, 12-pin, axial, A + B + Z and $\overline{A} + \overline{B} + \overline{Z}$, 5 VDC, RS-422

K0A3T Cable, 0.5 m, axial, A + B + Z, 4.75-30 VDC, push-pull

Pulse count

30, 60, 90, 100, 180, 200, 250, 300, 314, 360, 400, 500, 600, 720, 900, 1000, 1024, 1200, 1250, 1440, 1500, 1800, 2000, 2048, 2400, 2500

Example: RVI50N-09BAAA66N-500

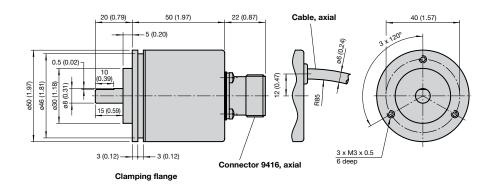
Technical Specifications

Electrical

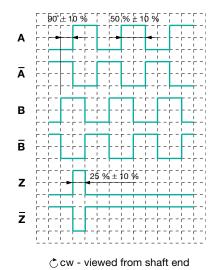
PULSE COUNT		≤ 2,500 ppr
	10)/	
OUTPUT FREQUEN	IUY	≤ 160 kHz
SUPPLY VOLTAGE		4.75-30 VDC
		5 VDC
OUTPUT		4.75-30 VDC, push-pull
		5 VDC, RS-422
CURRENT	4.75-30 VDC	≤ 80 mA
CONSUMPTION	5 VDC	≤ 150 mA
LOAD CURRENT	Push-pull	≤ 40 mA,
PER CHANNEL		short-circuit protected
	RS-422	≤ 20 mA
VOLTAGE DROP	Push-pull	< 4 V
	RS-422	_
RESPONSE TIME	Push-pull	250 ns
	RS-422	100 ns
CERTIFICATES	c ŪL us	No. NMTR.E223176
C€		Yes

Mechanical

MATERIAL	Housing	Powder-coated aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Plastic (0-600 ppr)
		Glass (601-2,500 ppr)
WEIGHT		≈ 8 oz.
ROTATIONAL SPEE	D	≤ 10,000 rpm
MOMENT OF INERT	TA .	$\leq 7.1 \text{ x } 10^{-5} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz
SHAFT	Axial	32 lbs
LOADING	Radial	33 lbs
BEARING WORKING	G LIFE	> 5 x 10 ⁸ revolutions


Environmental

STORAGE	Plastic disc	-40°C to +60°C (-40°F to +140°F)
TEMPERATURE	Glass disc	-40°C to +70°C (-40°F to +158°F)
OPERATING	Plastic disc	-20°C to +60°C (-4°F to +140°F)
TEMPERATURE	Glass disc	-20°C to +70°C (-4°F to +158°F)
HUMIDITY		No moisture condensation
SHOCK RESISTANCE	E	100 g for 3 ms
VIBRATION RESISTA	ANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	G	IP50


CONNECTOR	Type 9416, 12-pin
CABLE	Ø6 mm, 5 x #22 AWG, 0.5 m length

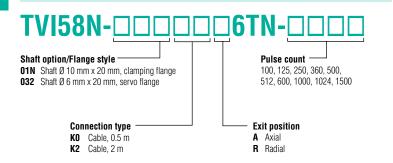
Dimensions

mm (in.)

Output Waveform

Electrical Connection

Signal	Type 9416, 12-pin quick disconnect	5-conductor cable, Ø 6 mm
Power Source U _B	7	Red
GND	8	Black
Α	1	Green
В	3	White
Z	5	Yellow
Ā	2	_
B	4	_
Z	6	_
Shield	Housing	_
	12 7 6 5 11	


TVI58 Series Solid Shaft

- Outputs up to 1500 ppr
- Loadable metal disk
- Opto-ASIC technology
- IP54

The TVI58 is Pepperl+Fuchs' industry standard 58 mm solid shaft encoder. Opto-ASIC technology adds reliability and provides superior noise immunity. The TVI58 is equipped with a heavy-duty metal disk for durability and high loads. Shaft diameters are available in 6 mm or 10 mm. Operating voltages range from 4.75 VDC to 30 VDC with a short-circuit proof, push-pull output.

Order Code

Example: TVI58N-01NK0A6TN-1024

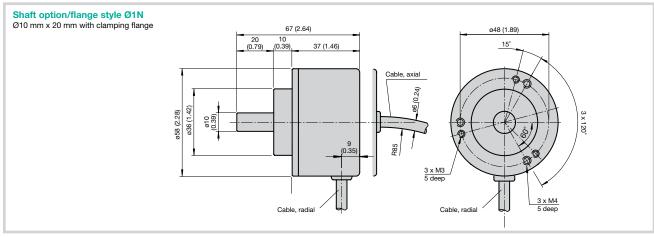
Technical Specifications

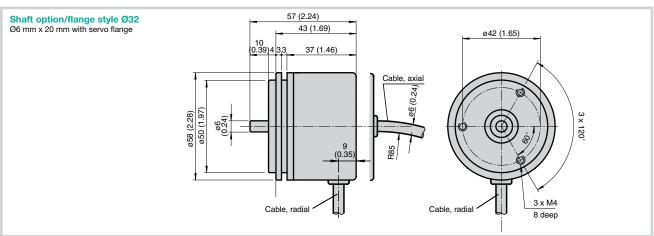
Electrical

PULSE COUNT	≤ 1,500 ppr	
OUTPUT FREQUENCY	≤ 100 kHz	
SUPPLY VOLTAGE	4.75-30 VDC	
	5 VDC for RS-422 functionality	
OUTPUT	Push-pull (RS-422)	
CURRENT CONSUMPTION	≤ 55 mA	
LOAD CURRENT PER CHANNEL	≤ 30 mA	
VOLTAGE DROP	≤ 2.5 V	
RESPONSE TIME	980 ns (225 ns)	
CERTIFICATES . ULus	No. NMTR.E223176	
C€	Yes	

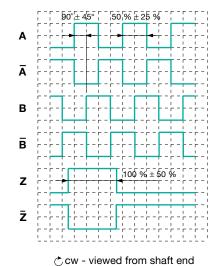
Mechanical

MATERIAL	Housing	Aluminum	
	Flange	Aluminum	
	Shaft	Stainless steel	
	Pulse disc	Nickel	
WEIGHT		≈ 7.8 oz	
ROTATIONAL SPEED		≤ 6,000 rpm	
MOMENT OF INERT	TA .	\leq 2.8 x 10 ⁻⁴ oz-in-sec ²	
STARTING TORQUE	AT 20°C	≤ 0.7 in-oz	
SHAFT	Axial	4.5 lbs	
LOADING	Radial	9.0 lbs	
BEARING WORKING	LIFE	≥ 2 x 10 ⁹ revolutions	


Environmental


STORAGE TEMPERATURE	-40°C to +80°C (-40°F to +176°F)
OPERATING TEMPERATURE	-10°C to +70°C (-14°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP54

CABLE	Ø6 mm, 8 x #26 AWG,
	0.5 m or 2 m length

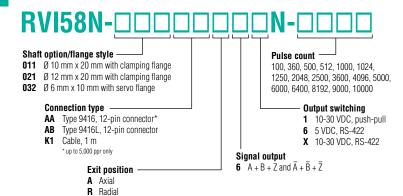

Dimensions

mm (in.)

Output Waveform

Electrical Connection

Signal	0 8-conductor cable, Ø 6 mm
Power Source U _B	Brown
GND	White
Α	Green
В	Gray
Z	Blue
Ā	Yellow
B	Pink
Ž	Red


RVI58 Series Solid Shaft

- Industry standard 58 mm diameter housing
- Outputs up to 10,000 ppr
- Servo or clamping flange
- IP65 protection rating
- 6 mm or 10 mm diameter shaft
- 10-30 VDC or 5 VDC powered

The RVI58 encoder series feature an IP65 rated 58 mm diameter aluminum housing. Outputs up to 10,000 ppr allow it to be used in applications that require the highest resolutions. Standard models are available with either a cable or round connector, with quadrature and index outputs or quadrature and index plus complementary outputs.

Order Code

Example: RVI58N-011AAR6XN-1250

Technical Specifications

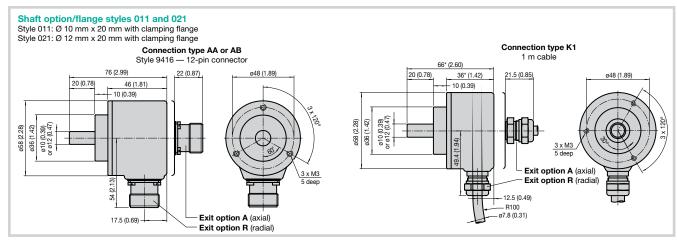
Electrical

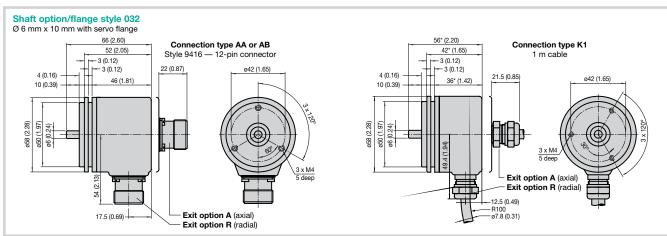
≤ 10,000 ppr	
≤ 200 kHz	
10-30 VDC 5 VDC	
10-30 VDC, push-pull 10-30 VDC, RS-422 5 VDC, RS-422	
≤ 60 mA (10-30 VDC) ≤ 70 mA (5 VDC)	
≤ 150 mA	
≤ 40 mA, short circuit, reverse polarity protected	
≥ ≤ 20 mA	
« 3 V	
-	
400 ns	
100 ns	
No. NMTR.E223176	
Yes	

Mechanical

MATERIAL Housing		Powder-coated aluminum	
Flange		Aluminum	
riange		Alummum	
Shaft		Stainless steel	
	Pulse disc	Plastic (0-1,500 ppr)	
		Glass (1,501-10,000 ppr)	
WEIGHT		≈ 12.5 oz	
ROTATIONAL SPEE	D	≤ 12,000 rpm	
MOMENT OF INERT	TA .	≤ 3.5 x 10 ⁻⁴ oz-in-sec ²	
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz	
SHAFT	Axial	40/9.8 lbs (6,000/12,000 rpm)	
LOADING	Radial	40/13.3 lbs (6,000/12,000 rpm)	
BEARING WORKING	G LIFE	> 2 x 10 ⁸ revolutions	

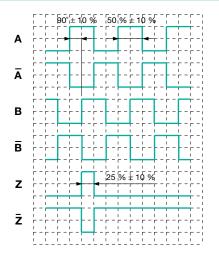
Environmental


STORAGE	Plastic disc	-40°C to +70°C (-40°F to +158°F)		
TEMPERATURE	Glass disc	-40°C to +100°C (-40°F to +212°F)		
OPERATING	Plastic disc	-20°C to +60°C (-4°F to +140°F)		
TEMPERATURE	Glass disc	-20°C to +80°C (-4°F to +170°F)		
HUMIDITY		No moisture condensation		
SHOCK RESISTANCE		100 g for 3 ms		
VIBRATION Up to 5,000 ppr		10 g, 10-2,000 Hz		
RESISTANCE Abo	ve 5,000 ppr	10 g, 55-2,000 Hz		
ENCLOSURE RATING		IP65		


CONNECTOR	Type 9416, 12-pin (up to 5,000 ppr only) Type 9416L, 12-pin
CABLE	Ø7.8 mm, 12 x #26 AWG, 1 m length

Incremental Rotary Encoders

Dimensions


mm (in.)

^{*} For RVI58 encoders above 5,000 ppr, add 6 mm to these dimensions.

Output Waveform

cw - viewed from shaft end

Electrical Connection

Signal	AA Type 9416, 12-pin quick disconnect	AB Type 9416L, 12-pin quick disconnect	K1 (≤ 5000 ppr) 12-conductor cable, Ø 7.8 mm	K1 (> 5000 ppr) 12-conductor cable, Ø 7.8 mm
Power Source U _B	12	12	Brown	Brown/Green
GND	10	10	White	White/Green
Α	5	5	Green	Brown
В	8	8	Gray	Gray
Z	3	3	Blue	Red
Ā	6	6	Yellow	Green
B	1	1	Pink	Pink
Z	4	4	Red	Black
No Connection	7	7	Gray/Pink	Violet
GND Sens*	11	11	Black	White
U _B Sens*	2	2	Violet	Blue
Shield	Housing	Housing	_	_
No Connection	9	9	_	_
	8 9 1 10 7 6 5 11	9 8 12 10 7 3 4 11 5		

^{*}Only for devices with 5 V supply and RS-422 interface

TSI40 Series Recessed Hollow Shaft

- Outputs up to 1024 ppr
- Smallest incremental encoder size
- Push-pull, RS-422 outputs available
- IP54
- Tangential cable outlet

The TSI40 features a 40 mm housing that is suitable for installation in even the most restrictive spaces. It has a recessed hollow shaft with shaft bore dimensions of 4 mm and 6 mm, and a depth of 15 mm. The TSI40 comes with the new, tangential cable outlet, designed by Pepperl+Fuchs, which enables the user to lay the cable radially or axially.

Order Code

16A Recessed hollow shaft Ø 4 mm x 15 mm **14A** Recessed hollow shaft Ø 6 mm x 15 mm 50, 100, 200, 360, 400, 500, 1000, 1024

Connection type K0 Cable, 0.5 m **K2** Cable, 2 m

Example: TSI40N-16AK0T6TN-1024

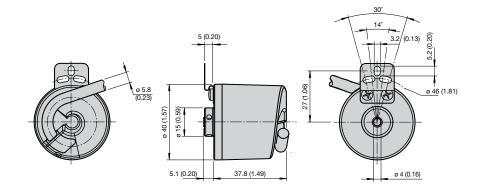
Technical Specifications

Electrical

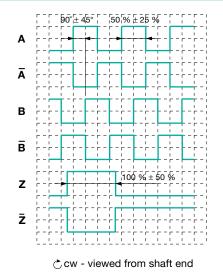
PULSE COUNT	≤ 1,024 ppr	
OUTPUT FREQUENCY	≤ 100 kHz	
SUPPLY VOLTAGE	4.75-30 VDC	
	5 VDC for RS-422 functionality	
OUTPUT	Push-pull (RS-422)	
CURRENT CONSUMPTION	≤ 55 mA	
LOAD CURRENT PER CHANNEL	≤ 30 mA	
VOLTAGE DROP	≤ 2.5 V	
RESPONSE TIME	980 ns (225 ns)	
CERTIFICATES .ULus	No. NMTR.E223176	
C€	Yes	

Mechanical

MATERIAL	Housing	Polycarbonate
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Nickel
WEIGHT		≈ 6.3 oz
ROTATIONAL SPEEL	D	≤ 6,000 rpm
MOMENT OF INERT	TA .	\leq 6.1 x 10 ⁻⁵ oz-in-sec ²
STARTING TORQUE	AT 20°C	≤ 0.3 in-oz
SHAFT	Angle offset	1°
LOADING	Axial offset	≤ 1 mm
BEARING WORKING	LIFE	≥ 2 x 10 ⁹ revolutions


Environmental

STORAGE TEMPERATURE	-25°C to +85°C (-13°F to +185°F)
OPERATING TEMPERATURE	-10°C to +70°C (-14°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP54


CABLE	Ø6 mm, 8 x #26 AWG,
	0.5 m or 2 m length

Dimensions

mm (in.)

Output Waveform

Electrical Connection

Signal	Ø 6 mm cable
Power Source U _B	Brown
GND	Blue
Α	Black
В	White
Z	Orange
Ā	Violet
B	Gray
Z	Yellow

THI58 SeriesHollow Shaft

- Outputs up to 1500 ppr
- Push-pull, RS-422 outputs available
- Insensitive to ambient temperature
- Loadable metal disc
- Opto-ASIC technology
- Sturdy, compact design

The cost-effective THI58 is a hollow shaft incremental encoder in an industry standard 58 mm housing diameter. It includes a more robust metal disc code, rather than a glass or plastic code, for rugged applications. The THI58 has shaft sizes of 10 mm, 12 mm, 15 mm or 5/8"; and provides up to 1500 ppr.

Order Code

THI58N-DAKOR6TN-DDD

512, 600, 1000, 1024, 1500

Shaft dimensions

OA Hollow shaft Ø 10 mm (clamping ring on flange side)

OB Hollow shaft Ø 12 mm (clamping ring on flange side)

OT Hollow shaft Ø 15 mm (clamping ring on flange side)
OW Hollow shaft Ø 5/8" (clamping ring on flange side)

1A Hollow shaft Ø 10 mm (clamping ring on cover side)
1B Hollow shaft Ø 12 mm (clamping ring on cover side)

1T Hollow shaft Ø 15 mm (clamping ring on cover side)

Example: THI58N-0AAK0R6TN-1024

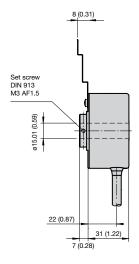
Technical Specifications

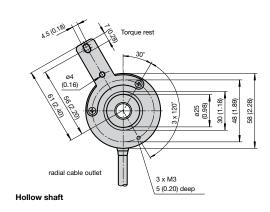
Electrical

PULSE COUNT	≤ 1,500 ppr
OUTPUT FREQUENCY	≤ 100 kHz
SUPPLY VOLTAGE	4.75-30 VDC
	5 VDC for RS-422 functionality
OUTPUT	Push-pull (RS-422)
CURRENT CONSUMPTION	≤ 55 mA
LOAD CURRENT PER CHANNEL	≤ 30 mA
VOLTAGE DROP	≤ 2.5 V
RESPONSE TIME	980 ns (225 ns)
CERTIFICATES . ULus	No. NMTR.E223176
C€	Yes

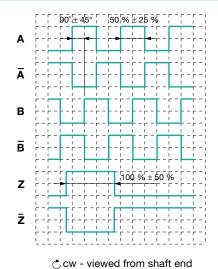
Mechanical

MATERIAL	Housing	Aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Nickel
WEIGHT		≈ 10.2 oz
ROTATIONAL SPEE	D	≤ 6,000 rpm
MOMENT OF INERT	ΊΑ	$\leq 5.7 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 3.5 in-oz
SHAFT	Angle offset	1°
LOADING	Axial offset	≤ 1 mm
BEARING WORKING	LIFE	> 2 x 10 ⁹ revolutions


Environmental


STORAGE TEMPERATURE	-40°C to +80°C (-40°F to +176°F)
OPERATING TEMPERATURE	-10°C to +70°C (-14°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP54

CABLE	Ø6 mm, 8 x #26 AWG,
	0.5 m length


Dimensions

mm (in.)

Output Waveform

Electrical Connection

Signal	0 8-conductor cable, Ø 6 mm
Power Source U _B	Brown
GND	White
Α	Green
В	Gray
Z	Blue
Ā	Yellow
B	Pink
Z	Red

RHI58 Series Hollow Shaft

- Standard 58 mm diameter housing
- Outputs up to 100,000 ppr
- 10 mm, 12 mm, 15 mm or 1/2" diameter shaft bore
- 10-30 VDC or 5 VDC powered

Series RHI58 encoders are the hollow shaft, 58 mm diameter European industrial standard. The encoder fits in tight locations thanks to a mounting profile less than 2 inches. The hollow shaft design allows the encoder to be mounted directly to the application while the torque rest prevents it from rotating. Models are available with pulse outputs up to 100,000 ppr and a maximum frequency of 300 kHz. It is offered with 6 outputs and a cable connection.

Order Code

RHI58N-□AK1R□N-□□□□ Shaft options OA Hollow shaft Ø 10 mm OB Hollow shaft Ø 12 mm ØT Hollow shaft 15 mm Signal output 6 A + B + Z and Ā + B + Z 2500, 2560, 3600, 4000,

(100 ppr and 360 ppr not available) **ØS** Hollow shaft 1/2"

Output switching

1 10-30 VDC, push-pull

5 VDC, RS-422

6 5 VDC, RS-422 **X** 10-30 VDC, RS-422

100, 360, 500, 512, 1000, 1024, 1250, 2000, 2048, 2500, 2560, 3600, 4000, 4096, 5000, 5120, 6250, 8000, 8192, 10000, 10240, 12500, 16000, 20000, 25000, 32000, 40000

Example: RHI58N-0BAK1R61N-2048

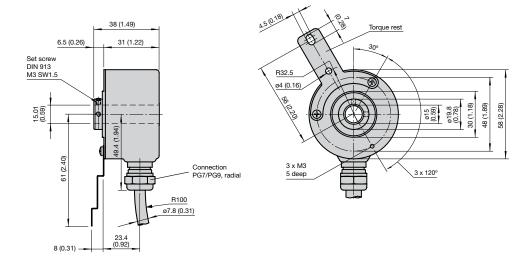
Technical Specifications

Electrical

PULSE COUNT		≤ 100,000 ppr
OUTPUT FREQUENCY		≤ 300 kHz
SUPPLY VOLTAGE		10-30 VDC 5 VDC
OUTPUT		10-30 VDC, push-pull 10-30 VDC, RS-422 5 VDC, RS-422
CURRENT	10-30 VDC	≤ 60 mA
CONSUMPTION	5 VDC	≤ 70 mA
LOAD CURRENT PER CHANNEL	Push-pull	≤ 40 mA, short circuit, reverse polarity protected
	RS-422	≤ 20 mA
VOLTAGE DROP	Push-pull	< 3 V
	RS-422	-
RESPONSE TIME	Push-pull	400 ns
	RS-422	100 ns
CERTIFICATES	c(UL)us	No. NMTR.E223176
C€		Yes

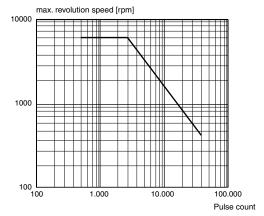
Mechanical

MATERIAL	Housing	Powder-coated aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Glass
WEIGHT		≈ 10 oz.
ROTATIONAL SPEE	D	≤ 6,000 rpm
MOMENT OF INERT	ГІА	$\leq 5.7 \text{ x } 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz
SHAFT	Angle offset	1°
LOADING	Axial offset	≤ 1 mm
BEARING WORKIN	G LIFE	> 2 x 10 ¹⁰ revolutions

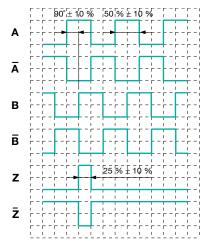

Environmental

STORAGE ≤ 5,000 p	pr -40°C to +100°C (-40°F to +212°F)
TEMPERATURE > 5,000 p	-40°C to +80°C (-40°F to +170°F)
OPERATING TEMPERATUR	E -20°C to +80°C (-4°F to +170°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP54

CABLE	Ø7.8 mm, 12 x #26 AWG,
	1 m length


Dimensions

mm (in.)



Maximum Revolution Speed

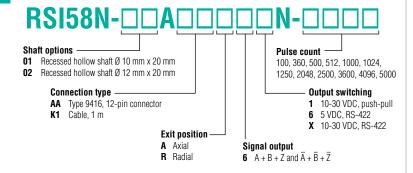
Pulse/revolution speed diagram

Output Waveform

Electrical Connection

Signal	12-conductor cable, Ø 7.8 mm
Power Source U _B	Brown
GND	White
Α	Green
В	Gray
Z	Blue
Ā	Yellow
B	Pink
Z	Red
GND Sens*	Black
U _B Sens*	Violet
Shield	_

*Only for devices with 5 V supply and RS-422 interface


RSI58 SeriesRecessed Hollow Shaft

- Standard 58 mm diameter housing
- Outputs up to 5000 ppr
- 10 mm or 12 mm diameter shaft bore
- 10-30 VDC or 5 VDC powered

Series RSI58 encoders are the recessed hollow shaft, 58 mm diameter European industrial standard. Unlike standard hollow shafts, the recessed hollow shaft hole is only 21 mm deep. This design allows the encoder to have an axial mounted connector. The encoder can be mounted directly to the application while the torque rest prevents the encoder from rotating. Models are available with pulse outputs up to 5000 ppr and a maximum frequency of 200 kHz. It is offered with 6 outputs and a cable or connector.

Order Code

Example: RSI58N-01AAAR6XN-1250

Technical Specifications

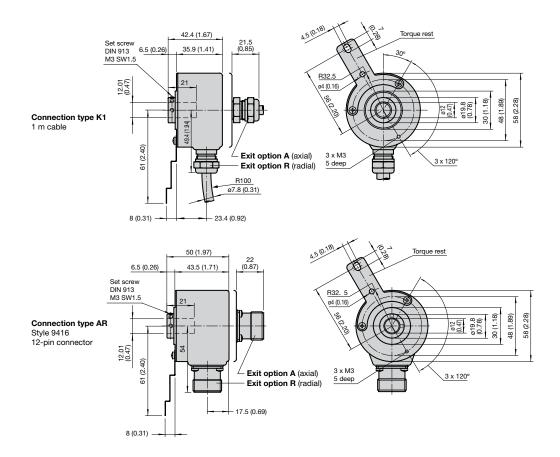
Electrical

PULSE COUNT		≤ 5,000 ppr
OUTPUT FREQUENCY		≤ 200 kHz
SUPPLY VOLTAGE		10-30 VDC 5 VDC
OUTPUT		10-30 VDC, push-pull 10-30 VDC, RS-422 5 VDC, RS-422
CURRENT	10-30 VDC	≤ 60 mA
CONSUMPTION	5 VDC	≤ 70 mA
LOAD CURRENT PER CHANNEL	Push-pull	≤ 40 mA, short circuit, reverse polarity protected
	RS-422	≤ 20 mA
VOLTAGE DROP	Push-pull	< 3 V
	RS-422	-
RESPONSE TIME	Push-pull	400 ns
	RS-422	100 ns
CERTIFICATES	c UL us	No. NMTR.E223176
C€		Yes

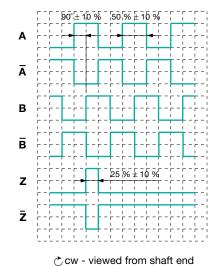
Mechanical

MATERIAL	Housing	Powder-coated aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Plastic (0-1,500 ppr) Glass (1,501-5,000 ppr)
WEIGHT		≈ 10 oz
ROTATIONAL SPEE	D	≤ 12,000 rpm
MOMENT OF INERT	TA .	$\leq 5.0 \text{ x } 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 1.4 in-oz
SHAFT	Angle offset	1°
LOADING	Axial offset	≤1 mm
BEARING WORKING	G LIFE	> 2 x 10 ¹⁰ revolutions

Environmental


STORAGE Plas	stic disc	-40°C to +70°C (-40°F to +158°F)
TEMPERATURE GIA	ass disc	-40°C to +100°C (-40°F to +212°F)
	stic disc	-20°C to +60°C (-4°F to +140°F)
TEMPERATURE GIA	ass disc	-20°C to +80°C (-4°F to +170°F)
HUMIDITY		No moisture condensation
SHOCK RESISTANCE		100 g for 3 ms
VIBRATION RESISTANCE		10 g, 10-2,000 Hz
ENCLOSURE RATING		IP54

CONNECTOR	Type 9416, 12-pin
CABLE	Ø7.8 mm, 12 x #26 AWG, 1 m length


Incremental Rotary Encoders

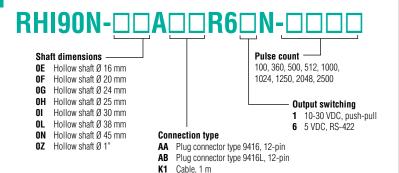
Dimensions

mm (in.)

Output Waveform

Signal	AA Type 9416, 12-pin quick disconnect	K1 12-conductor cable, Ø 7.8 mm
Power Source U _B	12	Brown
GND	10	White
Α	5	Green
В	8	Gray
Z	3	Blue
Ā	6	Yellow
B	1	Pink
Z	4	Red
No Connection	7	Gray/Pink
GND Sens*	11	Black
U _B Sens*	2	Violet
Shield	Housing	_
	7 6 5 11 10 2 3	

*Only for devices with 5 V supply and RS-422 interface


RHI90 Series Hollow Shaft

- Compact and rugged housing design
- Variable hollow shaft, 16 mm to 45 mm
- Outputs up to 2500 ppr
- Loadable metal disc
- 5 or 10-30 VDC

The RHI90 is specifically designed for mechanical drive and lift engineering. A rugged metal code disc assures that the encoder can be used for applications with extreme shock and vibration stress. With up to 2500 pulses it is ideal for applications that require high accuracy. Additional shaft bore sizes are available. Contact your P+F representative for details. Its relatively small outside diameter allows it to be used even if little mounting space is available.

Order Code

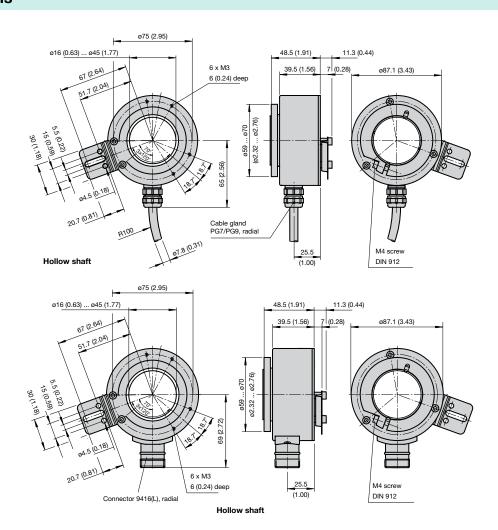
Example: RHI90N-0EAK1R61N-1024

Technical Specifications

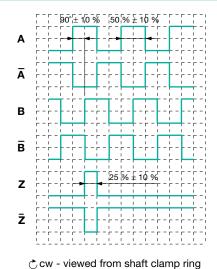
Electrical

PULSE COUNT		≤ 2,500 ppr	
OUTPUT FREQUENCY		≤ 120 kHz	
SUPPLY VOLTAGE		10-30 VDC 5 VDC	
OUTPUT		10-30 VDC, push-pull 5 VDC, RS-422	
CURRENT CONSUM	IPTION	≤ 70 mA	
LOAD CURRENT PER CHANNEL	Push-pull	≤ 40 mA, short circuit, reverse polarity protected	
	RS-422	≤ 20 mA	
VOLTAGE DROP	Push-pull	< 2.5 V	
	RS-422	-	
RESPONSE TIME		980 ns	
CERTIFICATES	c (UL) us	No. NMTR.E223176	
C€		Yes	

Mechanical


MATERIAL	Housing	Aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Nickel
WEIGHT		≈ 2.0 lbs
ROTATIONAL SPEE	D	≤ 3,500 rpm
STARTING TORQUE	AT 20°C	≤ 8.5 in-oz
SHAFT	Angle offset	1°
LOADING	Axial offset	≤1 mm
BEARING WORKING	G LIFE	≥ 2 x 10 ⁹ revolutions

Environmental

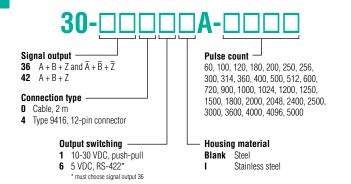

STORAGE TEMPERATURE	-40°C to +80°C (-40°F to +176°F)	
OPERATING TEMPERATURE	-20°C to +70°C (-4°F to +158°F)	
HUMIDITY	No moisture condensation	
SHOCK RESISTANCE	100 g for 6 ms	
VIBRATION RESISTANCE	10 g, 10-2,000 Hz	
ENCLOSURE RATING	IP65	

CONNECTOR	Type 9416, 12-pin Type 9416L, 12-pin
CABLE	Ø7.8 mm, 8 x #26 AWG, 1 m length

mm (in.)

Output Waveform

Signal	AA Type 9416, 12-pin quick disconnect	AB Type 9416L, 12-pin quick disconnect	K1 8-conductor cable, Ø 7.8 mm
Power Source U _B	12	12	Brown
GND	10	10	White
Α	5	5	Green
В	8	8	Gray
Z	3	3	Blue
Ā	6	6	Yellow
B	1	1	Pink
Z	4	4	Red
Shield	Housing	Housing	_
No Connection	2, 7, 9, 11	2, 7, 9, 11	_
	12 7 6 5 11	9 8 12 2 7 3 4 11 5	


Series 30 Solid Shaft

- · Heavy-duty steel housing
- Designed for high shock and vibration applications
- Outputs up to 5000 ppr
- 100 kHz maximum output frequency
- Push-pull or RS-422 outputs
- 12 mm diameter shaft

Series 30 encoders are Pepperl+Fuchs' most heavy-duty models. Standard models feature steel housings, a choice of 3 or 6 outputs with either a cable or a round connector. A stainless steel version is available for the harshest environments.

Order Code

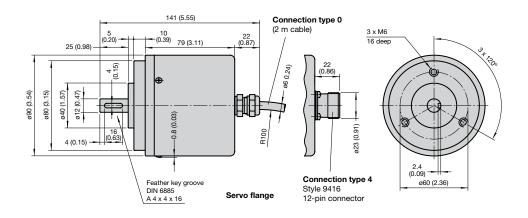
Example: 30-4241A-1500

Technical Specifications

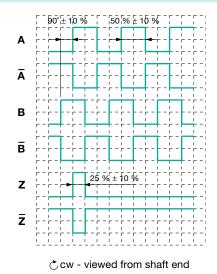
Electrical

PULSE COUNT		≤ 5,000 ppr	
OUTPUT FREQUENCY		≤ 100 kHz	
SUPPLY VOLTAGE		10-30 VDC 5 VDC	
OUTPUT		10-30 VDC, push-pull 5 VDC, RS-422	
CURRENT	10-30 VDC	≤ 80 mA	
CONSUMPTION	5 VDC	≤ 150 mA	
LOAD CURRENT PER CHANNEL	Push-pull	≤ 40 mA, short circuit, reverse polarity protected	
	RS-422	≤ 20 mA	
VOLTAGE DROP	Push-pull	< 4 V	
	RS-422	-	
RESPONSE TIME	Push-pull	250 ns	
	RS-422	100 ns	
CERTIFICATES	c(UL)us	No. NMTR.E223176	
C€		Yes	

Mechanical


MATERIAL	Housing	Steel (standard)
	_	Stainless steel (option I)
		\ ' '
Flange		Aluminum (standard)
		Stainless steel (option I)
	Shaft	Stainless steel
	Pulse disc	Plastic (0-1,500 ppr)
		Glass (1,501-5000 ppr)
		, , , , ,
WEIGHT		≈ 44 oz (standard)
		≈ 78 oz (option I)
ROTATIONAL SPEED		≤ 6,000 rpm
MOMENT OF INERT	ΓIA	≤ 3.8 x 10 ⁻³ oz-in-sec ²
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz
SHAFT	Axial	61 lbs
LOADING	Radial	54 lbs
BEARING WORKING	G LIFE	> 2 x 10 ⁸ revolutions

Environmental


STORAGE	Plastic disc	-40°C to +60°C (-40°F to +140°F)
TEMPERATURE	Glass disc	-40°C to +70°C (-40°F to +158°F)
OPERATING	Plastic disc	-20°C to +60°C (-4°F to +140°F)
TEMPERATURE	Glass disc	-20°C to +70°C (-4°F to +158°F)
HUMIDITY		95% RH non-condensing at 40°C (104°F) for 4 days
ENCLOSURE RATING		IP65

CONNECTOR	Type 9416, 12-pin
CABLE	Ø6 mm, 8 x #26 AWG,
	2 m length

mm (in.)

Output Waveform

Signal	4 Type 9416, 12-pin quick disconnect	0 8-conductor cable, Ø 6 mm
Power Source U _B	2	Brown
GND	1	White
Α	3	Green
В	4	Gray
Z	7	Blue
Ā	5	Yellow
B	6	Pink
Z	8	Red
	8 9 1 10 7 6 5 11	

RVI78 Series Solid Shaft

- Heavy-duty 78 mm diameter housing
- Outputs up to 5000 ppr
- IP65 protection rating
- 10 mm diameter shaft
- 10-30 VDC powered

Pepperl+Fuchs' Series RVI78 encoder is a heavy-duty aluminum model designed to withstand severe shaft loading. The unique mounting flange is a combination clamping/servo style that allows it to be face or side-mounted. Standard models are available with either a cable or round connector.

Order Code

RVI78N-10C A31N-

Connection type

AL Type 42306, 6-pin connector K2 Cable, 2 m

Pulse count -

60, 100, 120, 200, 250, 256, 300, 314, 360, 400, 500, 512, 600, 720, 900, 1000, 1024, 1200, 1250, 1500, 1800, 2000, 2048, 2400, 2500, 3000, 3600, 4000, 4096, 5000

Example: RVI78N-10CK2A31N-512

Technical Specifications

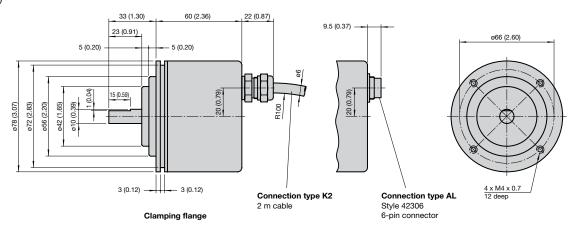
Electrical

PULSE COUNT	5,000 ppr	
OUTPUT FREQUENCY	≤ 100 kHz	
SUPPLY VOLTAGE	10-30 VDC	
OUTPUT	Push-pull	
CURRENT CONSUMPTION	≤ 80 mA	
LOAD CURRENT PER CHANNEL	≤ 40 mA, short circuit, reverse polarity protected	
VOLTAGE DROP	< 4 V	
RESPONSE TIME	250 ns	
CERTIFICATES	No. NMTR.E223176	
C€	Yes	

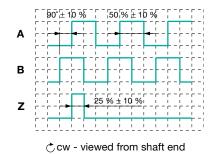
Mechanical

MATERIAL	Housing	Powder-coated aluminum
Flange		Aluminum
	Shaft	Stainless steel
	Pulse disc	Plastic (0-1,500 ppr) Glass (1,501-5,000 ppr)
WEIGHT		≈ 22 oz
ROTATIONAL SPEE	D	≤ 6,000 rpm
MOMENT OF INERT	ΠA	$\leq 1.4 \times 10^{-3} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz
SHAFT	Axial	50 lbs
LOADING	Radial	68 lbs
BEARING WORKING	G LIFE	> 1.2 x 10 ⁸ revolutions

Environmental


STORAGE	Plastic disc	-40°C to +60°C (-40°F to +140°F)
TEMPERATURE	Glass disc	-40°C to +70°C (-40°F to +158°F)
OPERATING	Plastic disc	-20°C to +60°C (-4°F to +140°F)
TEMPERATURE	Glass disc	-20°C to +70°C (-4°F to +158°F)
HUMIDITY		95% RH non-condensing at 40°C (104°F) for 4 days
	_	, , -
SHOCK RESISTANCE		100 g for 3 ms
VIBRATION RESISTANCE		10 g, 10-2,000 Hz
ENCLOSURE RATING		IP65

CONNECTOR	Type 42306, 6-pin
CABLE	Ø6 mm, 5 x #22 AWG, 2 m length


Incremental Rotary Encoders

Dimensions

mm (in.)

Output Waveform

Signal	AL Type 42306, 6-pin quick disconnect	K2 5-conductor cable, Ø 6 mm
Power Source U _B	4	Red
GND	5	Black
Α	1	Green
В	2	White
Z	3	Yellow
Shield	Housing	_
	6 2 3	

RVI84 SeriesSolid Shaft

- Intrinsically safe
- Outputs up to 25 ppr
- IP65 protection rating
- 10 mm diameter shaft
- NAMUR interface

Pepperl+Fuchs' Series RVI84 encoder is a heavy-duty aluminum model designed for use in hazardous areas. Quadrature outputs are used with an intrinsic safety barrier to provide up to 25 pulses per revolution. The unique mounting flange is a combination clamping/servo style that allows it to be face or side-mounted.

Order Code

RVI84N-10CK2A2NN-□□

Pulse count — 1, 2, 5, 10, 20, 25

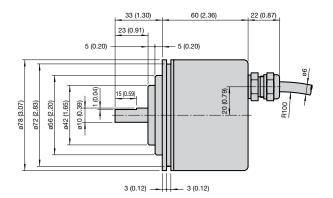
Example: RVI84N-10CK2A2NN-25

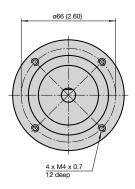
Technical Specifications

Electrical

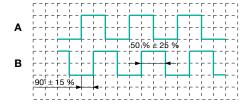
PULSE COUNT	≤ 25 ppr
OUTPUT FREQUENCY	≤ 5 kHz
SUPPLY VOLTAGE	8 VDC
OUTPUT	NAMUR, in accordance with
	DIN EN 60947-5-6
LOAD CURRENT	≤ 3 mA
PER CHANNEL	short-circuit protected
CERTIFICATES	No. NMTR.E223176
€ €	TB 99 ATEX 2219
C€	Yes

Mechanical


MATERIAL	Housing	Aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Pulse disc	Plastic
WEIGHT		≈ 22 oz
ROTATIONAL SPEE	D	≤ 3,000 rpm
MOMENT OF INERT	TA .	$\leq 1.4 \times 10^{-3} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz
SHAFT	Axial	50 lbs
LOADING	Radial	68 lbs
BEARING WORKING	G LIFE	> 1.2 x 10 ⁸ revolutions


Environmental

STORAGE TEMPERATURE	-25°C to +85°C (-13°F to +185°F)
OPERATING TEMPERATURE	-20°C to +60°C (-4°F to +140°F)
HUMIDITY	95% RH non-condensing at 40°C (104°F) for 4 days
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65


CABLE	Ø6 mm, 4 x #22 AWG,
	2 m length

mm (in.)

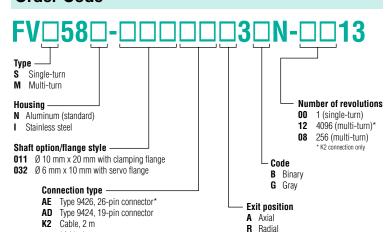
Output Waveform

Signal	4-conductor cable, Ø 6 mm
A _{NAMUR+}	Brown
A _{NAMUR} -	Blue
B _{NAMUR+}	White
B _{NAMUR} -	Black

Notes

Absolute Rotary Encoders

FVS58/FVM58 Series	Parallel Interface, Solid Shaft48-51
FSS58/FSM58 Series	Parallel Interface, Recessed Hollow Shaft52-55
AVS58/AVM58 Series	SSI Interface, Solid Shaft
ASS58/ASM58 Series	SSI Interface, Recessed Hollow Shaft60-63
BVS58/BVM58 Series	AS-Interface, Solid Shaft64-67
BSS58/BSM58 Series	AS-Interface, Recessed Hollow Shaft68-71
CVS58/CVM58 Series	CANopen Interface, Solid Shaft72-75
CSS58/CVM58 Series	CANopen Interface, Recessed Hollow Shaft 76-79
DVS58/DVM58 Series	DeviceNet Interface, Solid Shaft80-83
DSS58/DSM58 Series	DeviceNet Interface, Recessed Hollow Shaft84-87
EVS58/EVM58 Series	Ethernet Interface, Solid Shaft88-90
ESS58/ESM58 Series	Ethernet Interface, Recessed Hollow Shaft91-92
PVS58/PVM58 Series	PROFIBUS Interface, Solid Shaft93-95
PSS58/PSM58 Series	PROFIBUS Interface, Recessed Hollow Shaft96-98


FVS58/FVM58 Series **Parallel Interface**

- Extremely fast data transfer
- Short-circuit, push-pull output
- Standard 58 mm diameter housing
- Inputs for counting direction, **LATCH & PRESET**
- Solid shaft design

The FVS58 and FVM58 series absolute encoders are designed for very fast data transfer with a code change frequency up to 400 kHz. Position data is read directly from the Gray code disc. These solid shaft encoders are available in single- (13-bit resolution) or multi-turn (25-bit resolution) versions and are available with a clamping flange or a servo flange.

Order Code

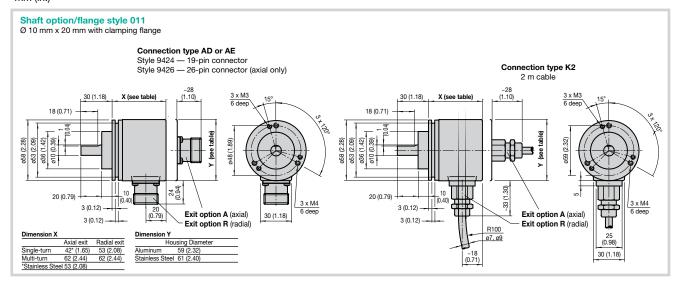
Example: FVS58N-011AEA3GN-0013

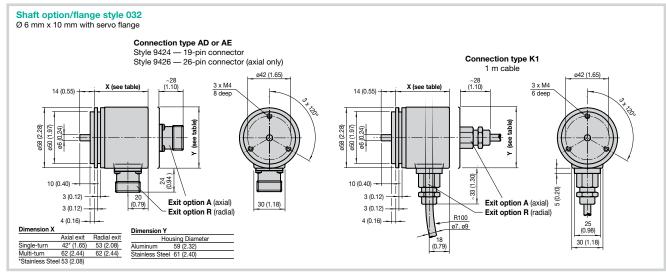
Technical Specifications

Electrical

SUPPLY VOLTAGE	10-30 VDC	
CURRENT CONSUMPTION	≤ 140 mA	
POWER CONSUMPTION	FVS58: ≤2 W; FVM58: ≤2.5 W; without output drivers	
OUTPUT CODE	Gray or binary	
LINEARITY	± 0.5 LSB	
COUNTING DIRECTION (Shaft End View)	Clockwise ascending (factory preset, adjustable)	
CODE PREPARATION TIME	0.3 ms	
INTERFACE TYPE	Push-pull, parallel	
RESOLUTION Bits/steps per turn	13-bit / 8192	
Bits/number of turns	12-bit / ≤ 4096	
OVERALL RESOLUTION	Single-turn: 13-bit; Multi-turn: 25-bit	
OPERATING CURRENT	40 mA	
VOLTAGE DROP	≤ 2.5 V	
SIGNAL VOLTAGE	High: U_b - voltage drop; Low: \leq 2.8 V	
RESPONSE TIME	300 ns	
CODE CHANGE FREQUENCY	400 kHz	
INPUT 1 Type	Selection of	
	counting direction (V/R)	
Signal duration	≥ 10 ms	
Switch-on/off delay	≥ 1 ms	
INPUT 2 Type	Temporary storage (LATCH)	
Signal duration	≥ 100 µs	
Switch-on/off delay	< 0.1 ms	
INPUT 3 Type	Preset	
Signal duration	≥ 10 ms	
Switch-on delay	< 1 ms	
INPUT SIGNAL VOLTAGE	High: 10-30 V; Low: 0-2 V	
INPUT CURRENT	< 6 mA	
CERTIFICATES C€	Yes	

Mechanical


MATERIAL Housing		Powder-coated aluminum	
Flange		Aluminum	
	Shaft	Stainless steel	
	Code disc	Plastic	
WEIGHT		$\textit{FVS58}: \approx 7.1 \text{ OZ}; \textit{FVM58}: \approx 14.1 \text{ OZ}$	
ROTATIONAL SPEED		≤ 12,000 rpm	
MOMENT OF INERTIA		$\leq 4.2 \times 10^{-4} \text{ oz-in-sec}^2$	
STARTING TORQUE AT 20°C		≤ 7.1 in-oz	
SHAFT LOADING		Axial: 9.0 lbs; Radial: 24.7 lbs	
BEARING WORKING LIFE		> 4 x 10 ¹⁰ revolutions	


Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-30°C to +70°C (-22°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

CONNECTOR	FVS58	Type 9424, 19-pin
	FVM58	Type 9426, 26-pin
CABLE	FVS58	Ø7 mm, 24 x #26 AWG, 2 m length
	FVM58	Ø9 mm, 30 x #26 AWG, 2 m length

mm (in.)

FVS58 FVM58					
			FVM58		
	K2 24-conductor	AD Type 9424, 19-pin	K2 30-conductor	AE Type 9426, 26-pin	
Signal	cable, Ø 7 mm	quick disconnect	cable, Ø 9 mm	quick disconnect	Description
Power Source U _B	Brown	12	Brown	2	Power supply
GND	White	6	White	1	Power supply
Bit 1	Green	1	Green	3	Data output
Bit 2	Yellow	2	Yellow	4	Data output
Bit 3	Gray	3	Gray	5	Data output
Bit 4	Pink	4	Pink	6	Data output
Bit 5	Blue	5	Blue	7	Data output
Bit 6	Red	7	Red	8	Data output
Bit 7	Black	8	Black	9	Data output
Bit 8	Violet	9	Violet	10	Data output
Bit 9	Gray/Pink	10	Gray/Pink	11	Data output
Bit 10	Red/Blue	11	Red/Blue	12	Data output
Bit 11	White/Green	13	White/Green	13	Data output
Bit 12	Brown/Green	14	Brown/Green	14	Data output
Bit 13	White/Yellow	15	White/Yellow	15	Data output
Bit 14	_	_	Yellow/Brown	16	Data output
Bit 15	_	_	White/Gray	17	Data output
Bit 16	_	_	Gray/Brown	18	Data output
Bit 17	_	_	White/Pink	19	Data output
Bit 18	_	_	Pink/Brown	20	Data output
Bit 19	_	_	White/Blue	21	Data output
Bit 20	_	_	Brown/Blue	22	Data output
Bit 21	_	_	White/Red	23	Data output
Bit 22	_	_	Brown/Red	_	Data output
Bit 23	_	-	White/Black	_	Data output
Bit 24	_	-	Brown/Black	_	Data output
Bit 25	-	_	Pink/Green	_	Data output
V/R	White/Pink	16	Gray/Green	25	Input for selection of counting direction
LATCH	Pink/Brown	17	Yellow/Gray	24	Temporary storage input
PRESET	Brown/Blue	18	Yellow/Pink	26	Zero setting input
NO CONNECTION	Gray/Brown	19			N/A
NO CONNECTION	Brown/Red	_			N/A
NO CONNECTION	White/Gray	_			N/A
NO CONNECTION	White/Blue	_			N/A
NO CONNECTION	White/Red	_			N/A
		17 11 12 18 1 10 13 19 2 2 9 3 3 8 4 4 4 16 15 5		14 25 15 1 16 2 24 17 17 17 18 18 12 19 10 10 16 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	

Programming

Inputs

Input Level

"0" : 0 V to 2 V "1" : 10 V to 30 V

 I_e : $< 6 \, \text{mA}$

LATCH Input (temporary storage)

With the latch input high, the position data on the parallel interface is "frozen." This allows for the position to be read without errors due to changing bits. If this input is not used its value is "0." Pulse duration $T>100~\mu s$.

Input level: "0" or unused

 Position data operating normally at the output, possibly changing.

"1"

Position data saved and stable

at the output.

PRESET Input (zero setting)

The encoder can be electronically set to position 0 with the PRESET input. Response time: T > 10 ms

ricoporise time. 1 > 10 me

Input level:

"0" or unused = Inactive

"1"

Output word is set to 0

V/R Input (selection of counting direction)

The counting direction of the encoder (when looking at the shaft end) is defined as clockwise rising or declining. The counting direction can be reversed with the V/R input. If the input is not used, the counting direction is rising by default, the level is at "1." Pulse duration T > 10 ms.

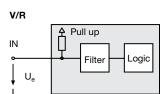
Input level:

"1" or unused

 rising code value for clockwise rotation.

"0"

 declining code value for clockwise rotation.



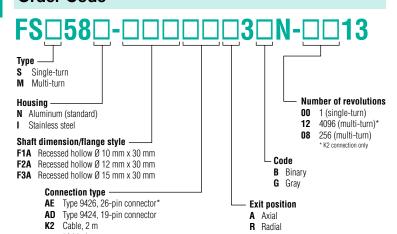
T Pull down

Logic

LATCH

 U_e

FSS58/FSM58 Series Parallel Interface


- Extremely fast data transfer
- Recessed hollow shaft design
- Economical mounting option
- Short-circuit protected, push-pull output
- Standard 58 mm diameter housing
- Inputs for counting direction, LATCH & PRESET

The FSS58 and FSM58 series absolute encoders are designed for very fast data transfer with a code change frequency up to 400 kHz. Position data is read directly from the Gray code disc. These recessed hollow shaft encoders are available in single-(13-bit resolution) or multi-turn (25-bit resolution) versions.

The FSS58 and FSM58 provide a simple and cost-effective mounting solution. The shaft hub connection is already integrated into the rotary encoder. The rotary encoder is held in place by the included torque rest.

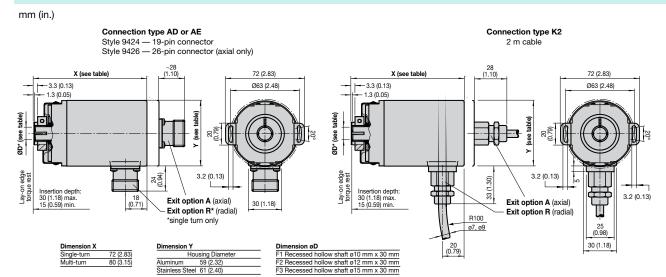
Order Code

Example: FSS58N-F1AAEA3GN-0013

Technical Specifications

Electrical

SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 140 mA
POWER CONSUMPTION	<i>FSS58:</i> \leq 2 W; <i>FSM58:</i> \leq 2.5 W;
	without output drivers
OUTPUT CODE	Gray or binary
LINEARITY	± 0.5 LSB
COUNTING DIRECTION	Clockwise ascending
(Shaft End View)	(factory preset, adjustable)
CODE PREPARATION TIME	0.3 ms
INTERFACE TYPE	Push-pull, parallel, short-circuit proof
RESOLUTION Bits/steps per turn	13-bit / 8192
Bits/number of turns	12-bit / ≤ 4096
OVERALL RESOLUTION	Single-turn: 13-bit; Multi-turn: 25-bit
OPERATING CURRENT	20 mA
VOLTAGE DROP	≤ 2.5 V
SIGNAL VOLTAGE	<i>High:</i> U_b - voltage drop; <i>Low:</i> \leq 2.8 V
RESPONSE TIME	300 ns
CODE CHANGE FREQUENCY	400 kHz
INPUT 1 Type	Selection of counting direction (V/R)
Signal duration	≥ 10 ms
Switch-on/off delay	≥ 1 ms
INPUT 2 Type	Temporary storage (LATCH)
Signal duration	≥ 100 µs
Switch-on/off delay	< 0.1 ms
INPUT 3 Type	Preset
Signal duration	≥ 10 ms
Switch-on delay	< 1 ms
INPUT SIGNAL VOLTAGE	High: 10-30 V; Low: 0-2 V
INPUT CURRENT	< 6 mA
CERTIFICATES	Voc
C€	Yes


Mechanical

MATERIAL Housing		Powder-coated aluminum	
Flange		Aluminum	
Shaft		Stainless steel	
	Code disc	Plastic	
WEIGHT		<i>F\$\$58</i> : ≈ 7.1 oz; <i>F\$M58</i> : ≈ 14.1 oz	
ROTATIONAL SPEED		≤ 12,000 rpm	
MOMENT OF INERTIA		$\leq 4.2 \times 10^{-4} \text{ oz-in-sec}^2$	
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz	
SHAFT LOADING	Angle offset	± 0.9°	
	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.1 mm	
	Radial offset	$\textit{Static}: \pm 0.5 \text{ mm}; \textit{Dynamic}: \pm 0.2 \text{ mm}$	
BEARING WORKIN	G LIFE	> 4 x 10 ¹⁰ revolutions	

Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-30°C to +70°C (-22°F to +158°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

CONNECTOR	FSS58	Type 9424, 19-pin
	FSM58	Type 9426, 26-pin
CABLE	FSS58	Ø7 mm, 24 x #26 AWG, 2 m length
	FSM58	Ø9 mm, 30 x #26 AWG, 2 m length

	FSS	\$58	FSM58		
	K2 24-conductor	AD Type 9424, 19-pin	K2 30-conductor	AE Type 9426, 26-pin	
Signal	cable, Ø 7 mm	quick disconnect	cable, Ø 9 mm	quick disconnect	Description
Power Source U _B	Brown	12	Brown	2	Power supply
GND	White	6	White	1	Power supply
Bit 1	Green	1	Green	3	Data output
Bit 2	Yellow	2	Yellow	4	Data output
Bit 3	Gray	3	Gray	5	Data output
Bit 4	Pink	4	Pink	6	Data output
Bit 5	Blue	5	Blue	7	Data output
Bit 6	Red	7	Red	8	Data output
Bit 7	Black	8	Black	9	Data output
Bit 8	Violet	9	Violet	10	Data output
Bit 9	Gray/Pink	10	Gray/Pink	11	Data output
Bit 10	Red/Blue	11	Red/Blue	12	Data output
Bit 11	White/Green	13	White/Green	13	Data output
Bit 12	Brown/Green	14	Brown/Green	14	Data output
Bit 13	White/Yellow	15	White/Yellow	15	Data output
Bit 14	-	_	Yellow/Brown	16	Data output
Bit 15	-	_	White/Gray	17	Data output
Bit 16	-	_	Gray/Brown	18	Data output
Bit 17	-	_	White/Pink	19	Data output
Bit 18	-	_	Pink/Brown	20	Data output
Bit 19	-	_	White/Blue	21	Data output
Bit 20	-	_	Brown/Blue	22	Data output
Bit 21	-	_	White/Red	23	Data output
Bit 22	-	_	Brown/Red	-	Data output
Bit 23	-	-	White/Black	-	Data output
Bit 24	_	_	Brown/Black	-	Data output
Bit 25	-	_	Pink/Green	-	Data output
V/R	White/Pink	16	Gray/Green	25	Input for selection of counting direction
LATCH	Pink/Brown	17	Yellow/Gray	24	Temporary storage input
PRESET	Brown/Blue	18	Yellow/Pink	26	Zero setting input
NO CONNECTION	Gray/Brown	19			N/A
NO CONNECTION	Brown/Red	_			N/A
NO CONNECTION	White/Gray	_			N/A
NO CONNECTION	White/Blue	_			N/A
NO CONNECTION	White/Red	_			N/A
		17 11 12 18 1 10 13 13 19 2 2 9 3 3 8 4 4 16 7 6 15 5		14 25 15 1 16 2 24 17 17 18 18 12 4 4 11 4 5 19 19 10 6 6 6 21 9 8 20 7 26	

Programming

Inputs

Input Level

"0" : 0 V to 2 V "1" : 10 V to 30 V

 I_e : $< 6 \, \text{mA}$

LATCH Input (temporary storage)

With the latch input high, the position data on the parallel interface is "frozen." This allows for the position to be read without errors due to changing bits. If this input is not used its value is "0." Pulse duration $T>100~\mu s$.

Input level: "0" or unused

 Position data operating normally at the output, possibly changing.

"1"

 Position data saved and stable at the output.

PRESET Input (zero setting)

The encoder can be electronically set to position 0 with the PRESET input. Response time: T > 10 ms

nesponse time. 1 > 10 ms

Input level:

"0" or unused =

Inactive

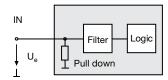
"1"

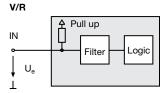
= Output word is set to 0

V/R Input (selection of counting direction)

The counting direction of the encoder (when looking at the shaft end) is defined as clockwise rising or declining. The counting direction can be reversed with the V/R input. If the input is not used, the counting direction is rising by default, the level is at "1." Pulse duration T > 10 ms.

Input level:

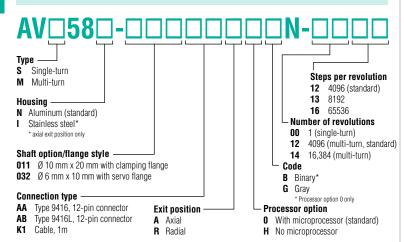

"1" or unused


 rising code value for clockwise rotation.

"0"

 declining code value for clockwise rotation.

AVS58/AVM58 SeriesSSI Interface


- Industrial standard 58 mm diameter housing
- Single or multi-turn
- IP65
- · 6 or 10 mm diameter shaft

Pepperl+Fuchs' AVS58 and AVM58 series absolute encoders communicate via SSI (synchronous serial interface). These encoders feature unbreakable plastic code discs, making them ideal for applications with heavy shock and vibration. They are available in either single-turn with 16-bit max resolution, or multi-turn with 30-bit max resolution versions. These encoders are rated IP65 and feature a rugged aluminum housing.

Order Code

Example: AVS58N-011AAR0GN-0013

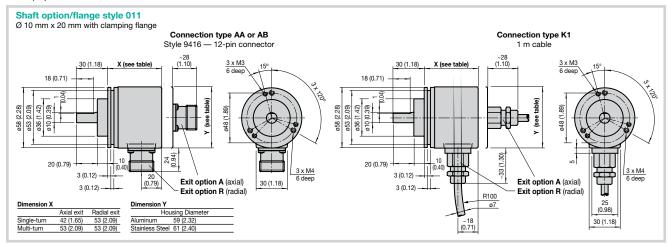
Technical Specifications

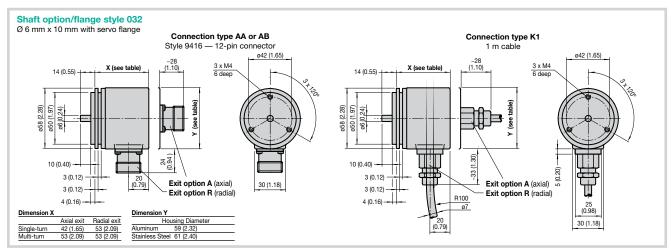
Electrical	
SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 180 mA
OUTPUT CODE	Gray or binary
LINEARITY	± 2 LSB at 16-bit,
	± 1 LSB at 13-bit,
	± 0.5 LSB at 12-bit
COUNTING DIRECTION	Clockwise descending
(Shaft End View)	(factory preset, adjustable)
INTERFACE Tyl	ne SSI
Transfer ra	te 0.1-2.0 MBaud
Monoflop tire	ne 20 ± 10 μs
VOLTAGE DROP	≤2.5 V
STANDARD CONFORMITY	RS-422
RESOLUTION Bits/steps per tu	m 16-bit / 65536
Bits/number of tur	ns 14-bit / ≤ 16,384
OVERALL Single-tu	<i>m</i> 16-bit
RESOLUTION Multi-tur	<i>n</i> 30-bit
OUTPUT SIGNAL VOLTAGE	High: U _b - voltage drop; Low: ≤ 2.8 V
INPUT 1 Tyl	Selection of
	counting direction (V/R)
Signal durati	on ≥ 10 ms
Switch-on del	< 0.001 ms
INPUT 2 Tyl	PRESET
Signal durati	on ≥ 10 ms
Switch-on del	< 100 ms
INPUT SIGNAL VOLTAGE	High: 10-30 V; Low: 0-2 V
INPUT CURRENT	< 6 mA
CERTIFICATES	Ver
C€	Yes

N	lechanical	
	MATERIAL	
	(Standard Model)	

C€

WAILIUAL	поизніу	i owaci-coatea alailillalli	
(Standard Model) Flange		Aluminum	
	Shaft	Stainless steel	
	Code disc	Plastic	
MATERIAL	Housing	Stainless steel	
(Stainless Model)	Flange	Stainless steel	
	Shaft	Stainless steel	
	Code disc	Plastic	
WEIGHT	Standard	≈ 1 lb	
S	tainless steel	≈ 1.8 lbs	
ROTATIONAL SPEE	D	≤ 12,000 rpm	
MOMENT OF INERT	ΠA	$\leq 7.1 \times 10^{-4} \text{ oz-in-sec}^2$	
STARTING TORQUE AT 20°C		≤ 7.1 in-oz	
SHAFT	Axial	9 lbs	
LOADING	Radial	24.7 lbs	
BEARING WORKING LIFE		4 x 10 ¹⁰ revolutions	


Powder-coated aluminum


Environmental

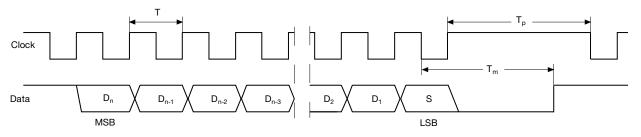
STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

o o i i i i i j p o o	
CONNECTOR	Type 9416, 12-pin Type 9416L, 12-pin
CABLE	Ø7 mm, 12 x #26 AWG, 1 m length

mm (in.)

Signal	AA Type 9416, 12-pin quick disconnect	AB Type 9416L, 12-pin quick disconnect	K1 12-conductor cable, Ø 7 mm	Description
Power Source U _B	2	8	Brown	Power supply
GND	1	1	White	Power supply
Clock (+)	3	3	Green	Positive cycle line
Clock (-)	4	11	Yellow	Negative cycle line
Data (+)	5	2	Gray	Positive transmission data
Data (-)	6	10	Pink	Negative transmission data
Reserved	7	12	Blue	Not wired, reserved
V/R	8	5	Red	Input for selection of counting direction
PRESET (w/ microprocessor only)	9	9	Black	Zero setting input
Reserved	10	4	Violet	Not wired, reserved
Reserved	11	6	Gray/Pink	Not wired, reserved
Reserved	12	7	Red/Blue	Not wired, reserved
	12 8 9 1 10 7 2 2 5 11 4	9 8 12 2 7 6 3 4 11 5		

Absolute Rotary Encoders


Programming

Description

The synchronous serial interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock signal and the absolute encoder responds with the position value.

Thus only 4 lines are required for the clock and data, regardless of the rotary encoder resolution. The RS-422 interface is galvanically isolated from the power supply.

SSI Data Transfer

D₁, ..., D_n: S:

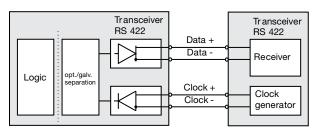
Position data Special bit

MSB:

Most significant bit

LSB:

Least significant bit


T = 1/f: T_m :

Duration of period, $f \le 1$ MHz

Monoflop time 10-30 μs T_p:

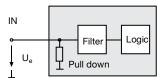
Clock pause \geq monoflop time ($T_p \geq T_m$)

Block Diagram

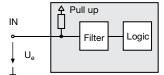
Rotary encoder AV□

Interface electronics

Line Length


Line length in m	Baud rate in kHz
<50	<400
<100	<300
<200	<200
<400	<100

Programming (continued)


Inputs

The selection of the counting direction input is activated with 0-level. The PRESET input is activated with 1-level.

PRESET Input

Input for selection of counting direction

Clock Input (2-wire):

Optically and galvanically isolated clock input in accordance with I/O Standard RS-422. The control module clock synchronizes the data transfer between the encoder and the interface electronics. A terminating resistor with a resistance of 120 Ω is incorporated between the clock lines "Clock +" and "Clock -".

SSI Output Format Standard

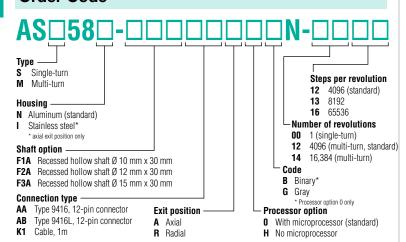
- At idle status, signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (Dn) and special bit (S)) is stored in the encoder is introduced.
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time Tm has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause Tp has expired.
- After the clock sequence is complete, the monoflop time Tm is triggered with the last falling pulse edge.
- The monoflop time Tm determines the lowest transmission frequency.

SSI Output Format Ring Slide Operation (Multiple Transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the
 possibility of detecting transmission errors.
- In multiple transmission, 25 bits are transferred per data word in standard format.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first transmission, the 26th pulse controls data repetition. If the 26th pulse follows after an amount of time greater than the monoflop time Tm, a new current data word will be transmitted with the following pulses.

If the pulse line is exchanged, the data word is generated offset. Ring slide operation is possible up to max. 13 bits.

ASS58/ASM58 Series SSI Interface


- Industrial standard 58 mm diameter housing
- Single or multi-turn
- IP65
- 10 or 12 mm diameter shaft

Pepperl+Fuchs' ASS58/ASM58 series absolute encoders feature recessed hollow shafts and communicate via SSI (synchronous serial interface). The encoder is mounted directly to the shaft using set screws. The torque rest is used to prevent the encoder from rotating. Available in either single-turn with 16-bit resolution, or multi-turn with 30-bit resolution versions. These encoders are rated IP65 and feature a rugged aluminum housing.

Order Code

Example: ASS58N-F3AAAR0GN-0013

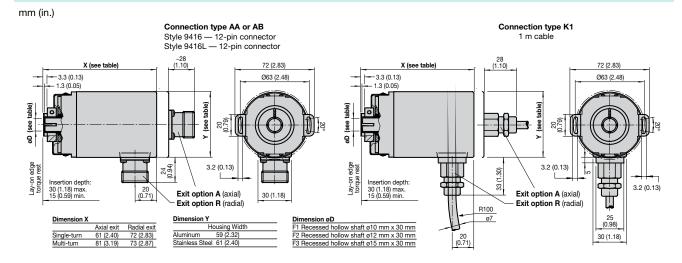
Technical Specifications

Electrical	
SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 180 mA
OUTPUT CODE	Gray, binary
LINEARITY	± 2 LSB at 16-bit, ± 1 LSB at 13-bit, ± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Clockwise declining (factory preset, adjustable)
STANDARD CONFORMITY	RS-422
INTERFACE Ty	iype SSI
Transfer r	rate 0.1-2.0 MBaud
Monoflop ti	ime 20 ± 10 μs
RESOLUTION Bits/steps per to	<i>turn</i> 16-bit / 65536
Bits/number of tu	<i>rms</i> 14-bit / ≤ 16,384
OVERALL Single-to	turn 16-bit
RESOLUTION Multi-tu	um 30-bit
OUTPUT SIGNAL VOLTAGE	High: U_b - voltage drop; Low: $\leq 2.8 \text{ V}$
INPUT 1 π	Selection of counting direction (V/R)
Signal durat	tion ≥ 10 ms
Switch-on de	elay < 0.001 ms
INPUT 2	ype PRESET
Signal durat	tion ≥ 10 ms
Switch-on de	elay < 100 ms
INPUT SIGNAL VOLTAGE	High: 10-30 V; Low: 0-2 V
INPUT CURRENT	< 6 mA

M	ec	na	ını	cai	

CERTIFICATES

C€


WECHAIICAL		
MATERIAL	Housing	Powder-coated aluminum
(Standard Model)	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Plastic
MATERIAL	Housing	Stainless steel
(Stainless Model)	Flange	Stainless steel
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT	Standard	≈ 1 lb
Si	tainless steel	≈ 1.8 lbs
ROTATIONAL SPEE	D	≤ 12,000 rpm
MOMENT OF INERT	TA .	$\leq 7.1 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE AT 20°C		≤ 7.1 in-oz
SHAFT	Angle offset	± 0.9°
LOADING	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.2 mm
	Radial offset	Static: ± 0.5 mm; Dynamic: ± 0.2 mm
BEARING WORKING	G LIFE	4 x 10 ¹⁰ revolutions

Yes

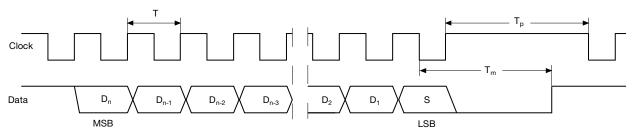
Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

Connection types		
CONNECTOR	Type 9416, 12-pin	
	Type 9416L, 12-pin	
CABLE	Ø7 mm, 12 x #26 AWG,	
	1 m length	

Signal	AA Type 9416, 12-pin quick disconnect	AB Type 9416L, 12-pin quick disconnect	K1 12-conductor cable, Ø 7 mm	Description
Power Source U _B	2	8	Brown	Power supply
GND	1	1	White	Power supply
Clock (+)	3	3	Green	Positive cycle line
Clock (-)	4	11	Yellow	Negative cycle line
Data (+)	5	2	Gray	Positive transmission data
Data (-)	6	10	Pink	Negative transmission data
Reserved	7	12	Blue	Not wired, reserved
V/R	8	5	Red	Input for selection of counting direction
PRESET (w/ microprocessor only)	9	9	Black	Zero setting input
Reserved	10	4	Violet	Not wired, reserved
Reserved	11	6	Gray/Pink	Not wired, reserved
Reserved	12	7	Red/Blue	Not wired, reserved
	8 9 1 10 7 6 5 11 4	9 8 12 7 7 3 4 11 5		

Absolute Rotary Encoders


Programming

Description

The synchronous serial interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock signal and the absolute encoder responds with the position value.

Thus only 4 lines are required for the clock and data, regardless of the rotary encoder resolution. The RS-422 interface is galvanically isolated from the power supply.

SSI Data Transfer

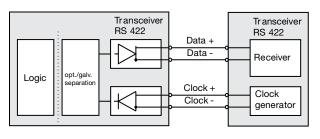
D₁, ..., D_n: S:

Position data Special bit

MSB: LSB:

Most significant bit

Least significant bit


T = 1/f: T_m :

Duration of period, $f \le 1$ MHz Monoflop time 10-30 μs

T_p:

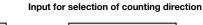
Clock pause \geq monoflop time ($T_p \geq T_m$)

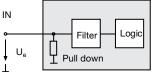
Block Diagram

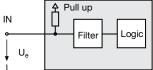
Rotary encoder AS□

Interface electronics

Line Length


Line length in m	Baud rate in kHz
<50	<400
<100	<300
<200	<200
<400	<100


Programming (continued)


Inputs

The selection of the counting direction input is activated with 0-level. The PRESET input is activated with 1-level.

PRESET Input

Clock Input (2-wire):

Optically and galvanically isolated clock input in accordance with I/O Standard RS-422. The control module clock synchronizes the data transfer between the encoder and the interface electronics. A terminating resistor with a resistance of 120 Ω is incorporated between the clock lines "Clock +" and "Clock -".

SSI Output Format Standard

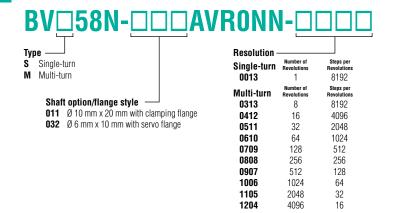
- At idle status, signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (Dn) and special bit (S)) is stored in the encoder is introduced.
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time Tm has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause Tp has expired.
- After the clock sequence is complete, the monoflop time Tm is triggered with the last falling pulse edge.
- The monoflop time Tm determines the lowest transmission frequency.

SSI Output Format Ring Slide Operation (Multiple Transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the
 possibility of detecting transmission errors.
- In multiple transmission, 25 bits are transferred per data word in standard format.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first transmission, the 26th pulse controls data repetition. If the 26th pulse follows after an amount of time greater than the monoflop time Tm, a new current data word will be transmitted with the following pulses.

If the pulse line is exchanged, the data word is generated offset. Ring slide operation is possible up to max. 13 bits.

BVS58/BVM58 SeriesAS-Interface


- Industrial standard 58 mm diameter housing
- Single or multi-turn
- Uses 4 AS-Interface slaves
- IP65
- Servo flange and 6 mm shaft or clamping flange and 10 mm shaft

Pepperl+Fuchs' BVS58 and BVM58 series absolute encoders communicate via AS-Interface. They are available in either single-turn with 13-bit resolution, or multi-turn with 16-bit resolution versions. The position value is output to the master within a single cycle via the 4 integrated AS-Interface chips. Each slave address can be individually set. These encoders are rated IP65 and feature a rugged aluminum housing.

Order Code

Example: BVS58N-032AVR0NN-0013

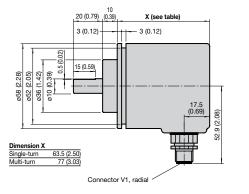
Technical Specifications

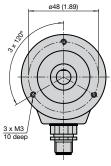
Electrical

SUPPLY VOLTAGE	29.5-31.6 VDC
CURRENT Startin	g ≤ 155 mA
CONSUMPTION Operational	<i>I</i> ≤ 65 mA
OUTPUT CODE	Programmable gray or binary
LINEARITY	±1 LSB
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Typ	AS-Interface
Transfer ra	te ≤ 0.167 MBaud
RESOLUTION Bits/steps per tu	m 13-bit / ≤ 8192
Bits/number of turn	ns 12-bit / ≤ 4096
OVERALL Single-tu	77 13-bit
RESOLUTION Multi-tur	16-bit
STANDARD CONFORMITY	AS-Interface
CERTIFICATES C€	Yes

Mechanical

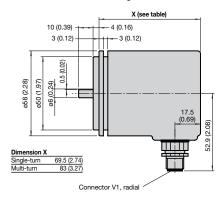
MATERIAL Housing		Powder-coated aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Glass
WEIGHT	BVS58	≈ 12 oz
	BVM58	≈ 13 oz
ROTATIONAL	BVS58	≤ 12,000 rpm
SPEED	BVM58	≤ 6,000 rpm
MOMENT OF INERT	ΓΙΑ	$\leq 4.3 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz
SHAFT	Axial - BVS	9.8 lbs at 12,000 rpm
LOADING	BVM	40 lbs at 6,000 rpm
	Radial - BVS	13.3 lbs at 12,000 rpm
	BVM	40 lbs at 6,000 rpm
BEARING WORKIN	G LIFE	> 4 x 10 ⁸ revolutions

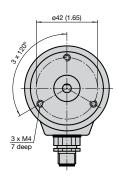

Environmental


STORAGE TEMPERATURE	-25°C to +85°C (-13°F to +185°F)
OPERATING TEMPERATURE	-20°C to +70°C (-4°F to +158°F)
HUMIDITY	98% RH non-condensing
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

CONNECTOR	Type V1, M12, 4-Pin

mm (in.)


Shaft option/flange style 011 Ø 10 mm x 20 mm with clamping flange



Shaft option/flange style 032

Ø 6 mm x 10 mm with servo flange

Signal	Type V1, 4-pin quick disconnect	Description
AS-i +	1	
Reserved	2	Not wired
AS-i -	3	
Reserved	4	Not wired
	2• •1	

Absolute Encoders BVS58/BVM58 Series

Absolute Rotary Encoders

Programming

Addresses

	Slave A	Slave B	Slave C	Slave D
Preset address	1	2	3	4
IO code	7	0	0	0
IO code	F	F	F	F

 Λ

When using an AS-Interface master or handheld programmer to change the slave addresses, it is absolutely essential to assign a different address to each of the four slaves.

Parameter Bits

The four parameter bits of slave A are used to set the parameters of the encoder. The parameter bits of slave B, C and D are not used.

Status of	Slave A								
parameter bit	P0	P1	P2	P3					
0	Gray code	Transfer with flag bits	Count down with clockwise rotation	Not used					
1	Binary code	Transfer without flag bits	Count up with clockwise rotation	Not used					

Data Bits

From the AS-Interface master to the encoder

Data from the AS-Interface master is transferred to the encoder via slave A, which works bidirectionally. Slaves B, C and D operate unidirectionally and can only send data.

When data bits D2 and D3 are changed from 01 to 10 or vice-versa, the position data is saved in the encoder.

Status of	Slave A						
D0/D1 or D2/D3	D0/D1	D2/D3					
00	Normal mode	Position data is not saved					
01	Rotary encoder is set to 1/4 of the single turn resolution	Position data is saved					
10	Rotary encoder is set to 0	Position data is saved					
11	Normal mode	Position data is not saved					

From the encoder to the AS-Interface master

Parameter bit P1 of slave A is used to determine if the encoder transfers data to the AS-Interface master with or without flag bits.

P1 = 1: Transfer without flag bits

	Slave A			slave A Slave B			Slave C				Slave D					
	00	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3
В	it 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12		Not used	!

P1 = 0: Transfer with flag bits MA, MB, MC, MD

	Slave A				Slav	/e B			Slav	re C			Slav	re D	
D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3
Bit 0	Bit 1	Bit 2	MA	Bit 0	Bit 1	Bit 2	MB	Bit 0	Bit 1	Bit 2	MC	Bit 0	Bit 1	Bit 2	MD

Sold by AA Electric 1-800-237-8274 • Lakeland, FL • Lawrenceville, GA • East Rutherford, NJ Web: www.A-Aelectric.com Email: njsales@a-aelectric.com

Programming (continued)

Operating Modes

Address assignments for the four slaves

The AS-Interface master accesses all slaves sequentially within an AS-Interface cycle to transfer output data to slave A or to read input data from the slaves. The single-turn absolute encoder uses four AS-Interface chips to transfer a position of 13 bits using 4 slave addresses.

These four slaves are queried sequentially and data may originate from any one of four different sampling times. To minimize this effect, sequential addresses (n, n+1, n+2 and n+3) should be assigned to slaves A, B, C and D.

In addition, slave A is responsible for controlling the encoder's functions. If the order of slaves is changed (D=n, C=n+1, B=n+2, A=n+3), the output word, which is supposed to be transmitted by the function control module of the absolute encoder, will not be transmitted until slaves D, C and B have been read in. A memory command would then only take effect for slave A. The command would not affect the slaves that had already been read until the next read cycle. This change of slave order will result in data inconsistency.

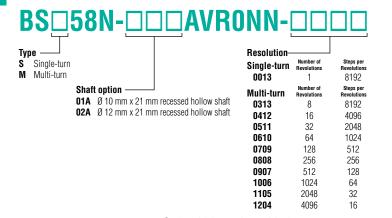
Temporary storage and transfer with flag bits

If any data from the rotary encoder is interrupted during transmission, it is possible that some of the data transferred to the controller originates from a different position in the data word. The controller can check the data integrity for a single data word by comparing the four flag bits. Each slave can transfer one flag bit making it possible for the control module to check which position data set an individual data set belongs to by comparing the 4 bits. Data bit D2 is used for this purpose. Using the flag bits reduces the size of the usable data from 16 bits to 12 bits.

	Slave A	Position data						
Cycle	Data bit D2	Slave A	Slave B	Slave C	Slave D			
1	0	XXX0	XXX0	XXX0	XXX0			
2	1	XXX1	XXX1	XXX1	XXX1			
3	0	XXX0	XXX0	XXX0	XXX0			
4	1	XXX1	XXX1	XXX1	XXX1			
etc.								

Sold by AA Electric 1-800-237-8274 • Lakeland, FL • Lawrenceville, GA • East Rutherford, NJ Web: www.A-Aelectric.com Email: njsales@a-aelectric.com

BSS58/BSM58 Series AS-Interface


- Industrial standard 58 mm diameter housing
- Single or multi-turn
- Uses 4 AS-Interface slaves
- IP65
- 10 mm or 12 mm recessed hollow shaft

Pepperl+Fuchs' BSS58 and BSM58 series absolute encoders feature recessed hollow shafts and communicate via AS-Interface. Available in either single-turn with 13 bit resolution, or multi-turn with 16 bit resolution versions. The position value is output to the master within a single cycle via the 4 integrated AS-Interface chips. Each slave address can be individually set. These encoders are rated IP65 and feature a rugged aluminum housing.

Order Code

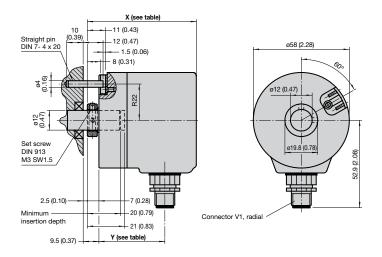
Example: BVS58N-032AVR0NN-0013

Technical Specifications

Electrical

SUPPLY VOLTAGE	29.5-31.6 VDC
CURRENT Starting	≤ 155 mA
CONSUMPTION Operational	≤ 65 mA
OUTPUT CODE	Programmable gray or binary
LINEARITY	±1 LSB
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Type	AS-Interface
Transfer rate	≤ 0.167 MBaud
RESOLUTION Bits/steps per turn	13-bit / ≤ 8192
Bits/number of turns	12-bit / ≤ 4096
OVERALL Single-turn	13-bit
RESOLUTION Multi-turn	16-bit
STANDARD CONFORMITY	AS-Interface
CERTIFICATES C€	Yes

Mechanical


MATERIAL	Housing	Powder-coated aluminum		
	Flange	Aluminum		
	Shaft	Stainless steel		
	Code disc	Glass		
WEIGHT		≈ 12 oz		
ROTATIONAL	BSS58	≤ 10,000 rpm		
SPEED	BSM58	≤ 6,000 rpm		
MOMENT OF INERT	ΠA	$\leq 4.3 \times 10^{-4} \text{ oz-in-sec}^2$		
STARTING TORQUE	AT 20°C	≤ 2.1 in-oz		
SHAFT	Angle offset	1°		
LOADING	Axial offset	≤ 1 mm		
BEARING WORKING	G LIFE	> 4 x 10 ¹⁰ revolutions		

Environmental

STORAGE TEMPERATURE	-25°C to +85°C (-13°F to +185°F)
OPERATING TEMPERATURE	-20°C to +70°C (-4°F to +158°F)
HUMIDITY	98% RH non-condensing
SHOCK RESISTANCE	100 g for 3 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65

CONNECTOR	Type V1, M12, 4-Pin

mm (in.)

	Dimension X	Dimension Y
Single-turn	67 (2.64)	41 (1.61)
Multi-turn	94 (3.70)	68 (2.68)

Signal	Type V1, 4-pin quick disconnect	Description
AS-i +	1	
Reserved	2	Not wired
AS-i -	3	
Reserved	4	Not wired
	2 • •1	

Absolute Rotary Encoders

Programming

Addresses

	Slave A	Slave B	Slave C	Slave D
Preset address	1	2	3	4
IO code	7	0	0	0
IO code	F	F	F	F

 Λ

When using an AS-Interface master or handheld programmer to change the slave addresses, it is absolutely essential to assign a different address to each of the four slaves.

Parameter Bits

The four parameter bits of slave A are used to set the parameters of the encoder. The parameter bits of slave B, C and D are not used.

Status of	Slave A								
parameter bit	P0	P1	P2	P3					
0	Gray code	Transfer with flag bits	Count down with clockwise rotation	Not used					
1	Binary code	Transfer without flag bits	Count up with clockwise rotation	Not used					

Data Bits

From the AS-Interface master to the encoder

Data from the AS-Interface master is transferred to the encoder via slave A, which works bidirectionally. Slaves B, C and D operate unidirectionally and can only send data.

When data bits D2 and D3 are changed from 01 to 10 or vice-versa, the position data is saved in the encoder.

Status of	Slave A						
D0/D1 or D2/D3	D0/D1	D2/D3					
00	Normal mode	Position data is not saved					
01	Rotary encoder is set to 1/4 of the single turn resolution	Position data is saved					
10	Rotary encoder is set to 0	Position data is saved					
11	Normal mode	Position data is not saved					

From the encoder to the AS-Interface master

Parameter bit P1 of slave A is used to determine if the encoder transfers data to the AS-Interface master with or without flag bits.

P1 = 1: Transfer without flag bits

	Slave A Slave B				Slave C				Slave D						
D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3
Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Not used!		!

P1 = 0: Transfer with flag bits MA, MB, MC, MD

	Slave A Slave B			Slave C			Slave D								
D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3	D0	D1	D2	D3
Bit 0	Bit 1	Bit 2	MA	Bit 0	Bit 1	Bit 2	MB	Bit 0	Bit 1	Bit 2	MC	Bit 0	Bit 1	Bit 2	MD

70

Programming (continued)

Operating Modes

Address assignments for the four slaves

The AS-Interface master accesses all slaves sequentially within an AS-Interface cycle to transfer output data to slave A or to read input data from the slaves. The single-turn absolute encoder uses four AS-Interface chips to transfer a position of 13 bits using 4 slave addresses.

These four slaves are queried sequentially and data may originate from any one of four different sampling times. To minimize this effect, sequential addresses (n, n+1, n+2 and n+3) should be assigned to slaves A, B, C and D.

In addition, slave A is responsible for controlling the encoder's functions. If the order of slaves is changed (D=n, C=n+1, B=n+2, A=n+3), the output word, which is supposed to be transmitted by the function control module of the absolute encoder, will not be transmitted until slaves D, C and B have been read in. A memory command would then only take effect for slave A. The command would not affect the slaves that had already been read until the next read cycle. This change of slave order will result in data inconsistency.

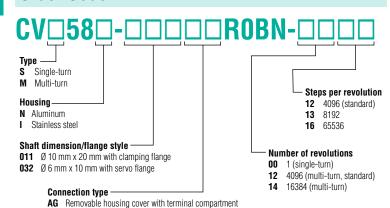
Temporary storage and transfer with flag bits

If any data from the rotary encoder is interrupted during transmission, it is possible that some of the data transferred to the controller originates from a different position in the data word. The controller can check the data integrity for a single data word by comparing the four flag bits. Each slave can transfer one flag bit making it possible for the control module to check which position data set an individual data set belongs to by comparing the 4 bits. Data bit D2 is used for this purpose. Using the flag bits reduces the size of the usable data from 16 bits to 12 bits.

	Slave A	Position data						
Cycle	Data bit D2	Slave A	Slave B	Slave C	Slave D			
1	0	XXX0	XXX0	XXX0	XXX0			
2	1	XXX1	XXX1	XXX1	XXX1			
3	0	XXX0	XXX0	XXX0	XXX0			
4	1	XXX1	XXX1	XXX1	XXX1			
etc.								

Sold by AA Electric 1-800-237-8274 • Lakeland, FL • Lawrenceville, GA • East Rutherford, NJ Web: www.A-Aelectric.com Email: njsales@a-aelectric.com

CVS58/CVM58 Series CANopen Interface


- Galvanically isolated CAN interface
- Cam function
- Programmable modes & parameters
- LED status indication
- Aluminum or stainless steel housings

The CVS58 and CVM58 series absolute encoders interface with CANopen. The bus electronics are integrated into the removable housing cover, making it possible to mount or replace new rotary encoders and the matching bus electronics separately during installation or service.

These solid shaft encoders are available with 6 mm or 10 mm solid shaft diameters, and in single- (16-bit resolution) or multi-turn (30-bit resolution) versions. They are available with a clamping flange or a servo flange.

Order Code

Example: CVS58N-011AGR0BN-0012

AZ Removable housing cover with M12 x 1 connectors

Technical Specifications

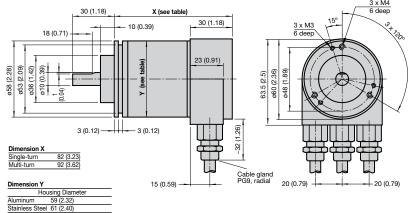
Electrical

SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 350 mA
OUTPUT CODE	Binary
LINEARITY	± 2 LSB at 16-bit,
	± 1 LSB at 13-bit,
	± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Interface type	CANopen
Transfer rate	≤ 1 Mbit/s
Standard conformity	DSP 406, Class 1 and 2
RESOLUTION Bits/steps per turn	16-bit / 65536
Bits/number of turns	14-bit / ≤ 16384
OVERALL Single-turn	≤ 16-bit
RESOLUTION Multi-turn	≤30-bit
CERTIFICATES C€	Yes

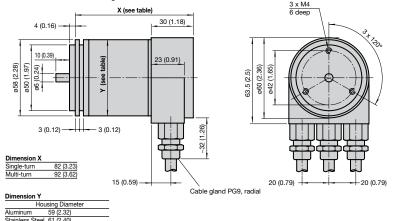
Mechanical

MATERIAL	Housing	Powder-coated aluminum		
(Standard Model)	Flange	Aluminum		
	Shaft	Stainless steel		
	Code disc	Plastic		
MATERIAL	Housing	Stainless steel		
(Stainless Model)	Flange	Stainless steel		
	Shaft	Stainless steel		
	Code disc	Plastic		
WEIGHT c	/S - Standard	≈ 1.2 lbs		
CVS - Optional St	ainless Steel	≈ 2.2 lbs		
CV	M - Standard	≈ 1.5 lbs		
CVM - Optional St	ainless Steel	≈ 2.6 lbs		
ROTATIONAL SPEE	D	≤ 12,000 rpm		
MOMENT OF INERT	TA .	$\leq 7.1 \times 10^{-4} \text{ oz-in-sec}^2$		
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz		
SHAFT LOADING Axial		9.0 lbs		
	Radial	24.7 lbs		
BEARING WORKING	G LIFE	> 4 x 10 ¹⁰ revolutions		

Environmental


STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-1,000 Hz
ENCLOSURE RATING	IP65

TERMINAL CONNECTOR	Terminal compartment with
	3 x PG9 cable glands

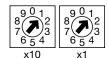

Dimensions

mm (in.)

Shaft option/flange style 011 Ø 10 mm x 20 mm with clamping flange

Shaft option/flange style 032 Ø 6 mm x 10 mm with servo flange

Electrical Connection

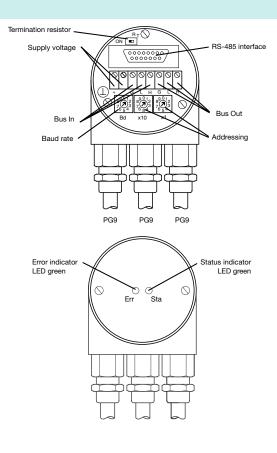

Terminal	Cable	Description
	_	Ground connection for power supply
(+)	Red	Power supply
(-)	Black	Power supply
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high

Absolute Rotary Encoders

Configuration

Setting the member address

The member address can be set with the rotary switches. The address can be defined between 1 and 96, and may be assigned only once. The addresses 97 to 99 are reserved.


Adjusting the terminating resistor

The terminating resistor $R_T\,(121~\Omega)$ can be switched into the circuit with the switch:

 $\begin{array}{ccc} \text{Last member} & \text{Member X} \\ & & & \\ R_T & & & R_T \\ \text{ON} & \blacksquare & & \text{ON} & \blacksquare \\ \end{array}$

Baud rate in kBit/s	Rotary switch
20	0
50	1
100	2
125	3
250	4
500	5
800	6
1000	7
Reserved	8-9

LED indicators

LED red	LED green	Meaning
off	off	No voltage supply
off	on	Encoder ready, boot-up message not transmitted yet. Possible reasons:
		no further participant present
		wrong baud rate
		encoder in prepared status
flashing	on	Boot-up message transmitted. Device configuration possible.
on	on	Normal operation mode, encoder in operational status.

Programming

Programmable CAN operating modes

Mode	Description
Polled mode	The connected host requests the current actual position value via a telegram. The absolute encoder reads in the current position, calculates all parameters that may have been set and then sends back the actual process value.
Cyclic mode	The absolute encoder sends the current actual process value cyclically, without being prompted by the host. The cycle time can be programmed in milliseconds for values between 1 ms and 65,536 ms.
Sync mode	After the sync telegram has been received by the host, the absolute encoder sends the current actual process value. If multiple nodes should respond to the sync telegram, the individual nodes report one after the other according to their CAN identifier. There is no programming of an offset time. The sync counter can be programmed so that the rotary encoder does not transmit until after a defined number of sync telegrams.

Programmable rotary encoder parameters

CVS58

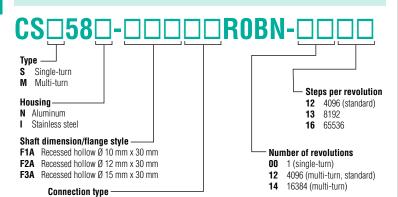
Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.
Min. and max. limit switch	A total of two positions can be programmed. The absolute encoder sets one bit to high state in the 32 Bit actual process value if a value falls outside the range between two positions.
Cam	A freely programmable cam can be set within the overall resolution. This produces the functionality of a mechanical cam shifting mechanism.

CVM58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Overall resolution	This parameter indicates the desired number of measurement units of the entire travel length. This value must not exceed the overall resolution of the absolute encoder.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.
Min. and max. limit switch	A total of two positions can be programmed. The absolute encoder sets one bit to high state in the 32 Bit actual process value if a value falls outside the range between two positions.
Cam	A freely programmable cam can be set within the overall resolution. This produces the functionality of a mechanical cam shifting mechanism.

CSS58/CSM58 Series CANopen Interface

- Galvanically isolated CAN interface
- Cam function
- Programmable modes & parameters
- LED status indication
- Aluminum or stainless steel housings
- Recessed hollow shaft


CANopen

The CSS58 and CSM58 series absolute encoders interface with CANopen. The bus electronics are integrated into the removable housing cover, making it possible to mount or replace new rotary encoders and the matching bus electronics separately during installation or service.

These recessed hollow shaft encoders are available with 10 mm, 12 mm, or 15 mm shaft diameters, and in single- (16-bit resolution) or multi-turn (30-bit resolution) versions.

Order Code

Example: CSS58N-F1AAGR0BN-0012

AG Removable housing cover with terminal compartment AZ Removable housing cover with M12 x 1 connectors

Technical Specifications

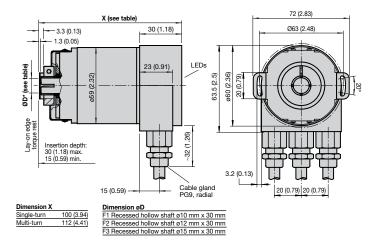
Electrical

SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 230 mA at 10 V DC, ≤ 100 mA at 24 V DC
OUTPUT CODE	Binary
LINEARITY	± 2 LSB at 16-bit, ± 1 LSB at 13-bit, ± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Interface type	CANopen
Transfer rate	≤ 1 Mbit/s
Standard conformity	DSP 406, Class 1 and 2
RESOLUTION Bits/steps per turn	16-bit / 65536
Bits/number of turns	14-bit / ≤ 16384
OVERALL Single-turn	≤ 16-bit
RESOLUTION Multi-turn	≤30-bit
CERTIFICATES C€	Yes

Mechanical

MATERIAL	Housing	Powder-coated aluminum
(Standard Model)	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Plastic
MATERIAL	Housing	Stainless steel
(Stainless Model)	Flange	Stainless steel
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT C:	SS - Standard	≈ 1.2 lbs
CSS - Optional Si	ainless Steel	≈ 2.4 lbs
CS	M - Standard	≈ 1.3 lbs
CSM - Optional St	ainless Steel	≈ 2.6 lbs
ROTATIONAL SPEE	D	≤ 12,000 rpm
MOMENT OF INER	ΠA	$\leq 4.2 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 4.2 in-oz
SHAFT LOADING	Angle offset	± 0.9°
	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.1 mm
	Radial offset	Static: ± 0.5 mm; Dynamic: ± 0.2 mm
BEARING WORKIN	G LIFE	> 4 x 10 ¹⁰ revolutions

Environmental


STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-1,000 Hz
ENCLOSURE RATING	IP64

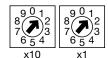
Connection Types

TERMINAL CONNECTOR	Terminal compartment with
	3 x PG9 cable glands

Dimensions

mm (in.)

Electrical Connection

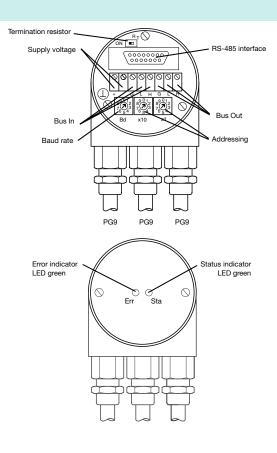

Terminal	Cable	Description
	_	Ground connection for power supply
(+)	Red	Power supply
(-)	Black	Power supply
CG	-	CAN ground
CL	Blue	CAN low
CH	White	CAN high
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high

Absolute Rotary Encoders

Configuration

Setting the member address

The member address can be set with the rotary switches. The address can be defined between 1 and 96, and may be assigned only once. The addresses 97 to 99 are reserved.


Adjusting the terminating resistor

The terminating resistor $R_T\,(121~\Omega)$ can be switched into the circuit with the switch:

 $\begin{array}{ccc} \text{Last member} & \text{Member X} \\ & & & \\ R_T & & & R_T \\ \text{ON} & \blacksquare & & \text{ON} & \blacksquare \\ \end{array}$

Baud rate in kBit/s	Rotary switch
20	0
50	1
100	2
125	3
250	4
500	5
800	6
1000	7
Reserved	8-9

LED indicators

LED red	LED green	Meaning	
off	off	No voltage supply	
off	on	Encoder ready, boot-up message not transmitted yet. Possible reasons:	
		no further participant present	
		wrong baud rate	
		encoder in prepared status	
flashing	on	Boot-up message transmitted. Device configuration possible.	
on	on	Normal operation mode, encoder in operational status.	

Programming

Programmable CAN operating modes

Mode	Description
Polled mode	The connected host requests the current actual position value via a telegram. The absolute encoder reads in the current position, calculates all parameters that may have been set and then sends back the actual process value.
Cyclic mode	The absolute encoder sends the current actual process value cyclically, without being prompted by the host. The cycle time can be programmed in milliseconds for values between 1 ms and 65,536 ms.
Sync mode	After the sync telegram has been received by the host, the absolute encoder sends the current actual process value. If multiple nodes should respond to the sync telegram, the individual nodes report one after the other according to their CAN identifier. There is no programming of an offset time. The sync counter can be programmed so that the rotary encoder does not transmit until after a defined number of sync telegrams.

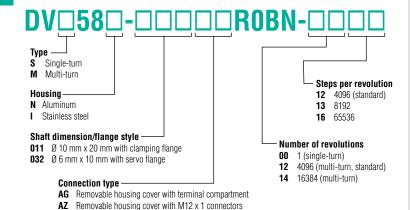
Programmable rotary encoder parameters

CSS58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.
Min. and max. limit switch	A total of two positions can be programmed. The absolute encoder sets one bit to high state in the 32 Bit actual process value if a value falls outside the range between two positions.
Cam	A freely programmable cam can be set within the overall resolution. This produces the functionality of a mechanical cam shifting mechanism.

CSM58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Overall resolution	This parameter indicates the desired number of measurement units of the entire travel length. This value must not exceed the overall resolution of the absolute encoder.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.
Min. and max. limit switch	A total of two positions can be programmed. The absolute encoder sets one bit to high state in the 32 Bit actual process value if a value falls outside the range between two positions.
Cam	A freely programmable cam can be set within the overall resolution. This produces the functionality of a mechanical cam shifting mechanism.


DVS58/DVM58 Series DeviceNet Interface

- Industrial standard 58 mm diameter housing
- Single or multi-turn
- Addressable
- IP65
- Servo or clamping flange

Pepperl+Fuchs' DVS58 and DVM58 series absolute encoders interface with DeviceNet. Available in either single-turn with 16-bit resolution, or multi-turn with 30-bit resolution versions. Each unit is individually addressable from 0 to 63 using the switches in the removable housing cover. The encoder operates in 3 modes: polled, change of state or cyclic. These encoders are rated IP65 and feature a rugged aluminum housing.

Order Code

Example: DVS58N-011AGR0BN-0012

Technical Specifications

Electrical

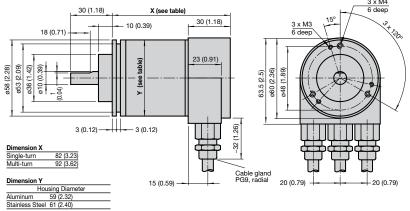
SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	≤ 350 mA
OUTPUT CODE	Binary
LINEARITY	± 2 LSB at 16-bit, ± 1 LSB at 13-bit, ± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Type	DeviceNet
Transfer rate	≤ 0.5 MBaud
RESOLUTION Bits/steps per turn	16-bit / 65,536
Bits/number of turns	14-bit / ≤ 16,384
OVERALL Single-turn	16-bit
RESOLUTION Multi-turn	30 bit
CERTIFICATES C€	Yes

Mechanical

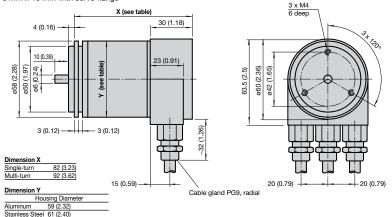
MATERIAL	Housing	Powder-coated aluminum
(Standard Model)	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Plastic
MATERIAL	Housing	Stainless steel
(Stainless Model)	Flange	Stainless steel
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT DVS - Standard		≈ 1.1 lbs
CVS - Optional Stainless Steel		≈ 2.2 lbs
DVM - Standard		≈ 1.1 lbs
DVM - Optional Stainless Steel		≈ 2.4 lbs
ROTATIONAL SPEED		≤ 12,000 rpm
MOMENT OF INERTIA		\leq 7.1 x 10 ⁻⁴ oz-in-sec ²
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz
SHAFT	Axial	40 lbs
LOADING	Radial	40 lbs
BEARING WORKING	G LIFE	> 4 x 10 ⁸ revolutions
BEARING WORKING	G LIFE	> 4 x 10 ⁸ revolutions

Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	98% RH non-condensing
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP65


Connection Types

	- · · · · · · · · · · · · · · · · · · ·	
TERMINAL CONNECTOR		Terminal compartment with
		3 x PG9 cable glands


Dimensions

mm (in.)

Shaft option/flange style 011 Ø 10 mm x 20 mm with clamping flange

Shaft option/flange style 032 Ø 6 mm x 10 mm with servo flange

Electrical Connection

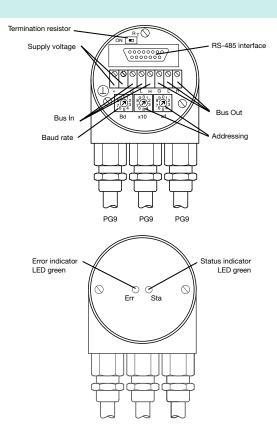
Terminal	Cable	Description
T	_	Ground connection for power supply
(+)	Red	Power supply
(-)	Black	Power supply
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high

Absolute Rotary Encoders

Configuration

Setting the member address

The member address can be set with the rotary switches. The address can be defined between 1 and 63, and each address may only be assigned once.


Adjusting the terminating resistor

The terminating resistor $R_T\,(121~\Omega)$ can be switched into the circuit with the switch:

 $\begin{array}{ccc} \text{Last member} & & \text{Member X} \\ \hline R_T & & R_T \\ \text{ON} & \hline & & \text{ON} & \hline \end{array}$

Baud rate in kBit/s	Rotary switch
125	0
250	1
500	2
125	3
Reserved	4-9

LED indicators

LEC) red	LED green	Meaning	
C	off	off	No voltage supply	
C	off	on	Encoder ready, boot-up message not transmitted yet. Possible reasons:	
			no further participant present	
			wrong baud rate	
			encoder in prepared status	
flas	shing	on	Boot-up message transmitted. Device configuration possible.	
C	on	on	Normal operation mode, encoder in operational status.	

Programming

Programmable CAN operating modes

Mode	Description
Polled mode	The connected host requests the current actual position value via a telegram. The absolute encoder reads in the current position, calculates all parameters that may have been set and then sends back the actual process value.
Cyclic mode	The absolute encoder sends the current process value depending on a programmable timer. This can cause the bus load to be reduced since the member on the network only sends a message after a specific amount of time without a prompt from the master.
Change of state mode	The absolute encoder monitors the current process value and transfers the current value by itself if there is any change in the value. This can cause the bus load to be reduced, since the member on the network only sends a message if there has been a change.

Programmable rotary encoder parameters

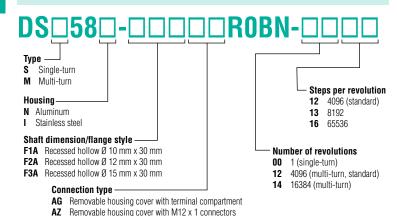
DVS58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.

DVM58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Overall resolution	This parameter indicates the desired number of measurement units of the entire travel length. This value must not exceed the overall resolution of the absolute encoder.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.

DSS58/DSM58 Series DeviceNet Interface


- IP67
- Programmable modes & parameters
- LED status indication
- Recessed hollow shaft with torque rest
- Aluminum or stainless steel housing

The DSS58 and DSM58 series absolute encoders interface with DeviceNet. The bus electronics are integrated into the removable housing cover, making it possible to mount or replace new rotary encoders and the matching bus electronics separately during installation or service.

These recessed hollow shaft encoders are available in single-(16-bit resolution) or multi-turn (30-bit resolution) versions. They mount directly onto the application shaft without any coupling. The rotary encoder is held in place by a torque rest.

Order Code

Example: DSS58N-F1AAGR0BN-0012

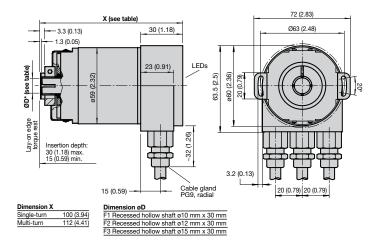
Technical Specifications

Electrical

SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	\leq 230 mA at 10 V DC,
	\leq 100 mA at 24 V DC
OUTPUT CODE	Binary
LINEARITY	± 2 LSB at 16-bit,
	± 1 LSB at 13-bit,
	± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Interface type	DeviceNet
Transfer rate	≤ 0.5 Mbit/s
RESOLUTION Bits/steps per turn	16-bit / 65536
Bits/number of turns	14-bit / ≤ 16384
OVERALL Single-turn	16-bit
RESOLUTION Multi-turn	30-bit
CERTIFICATES C€	Yes

Mechanical

MATERIAL –	Housing	Powder-coated aluminum
STANDARD	Flange	Aluminum
	Shaft	Stainless steel
MATERIAL –	Housing	Stainless steel
OPTIONAL	Flange	Stainless steel
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT D	SS - Standard	≈ 1.2 lbs
DSS - Optional Stainless Steel		≈ 2.4 lbs
DS	SM - Standard	≈ 1.3 lbs
DSM - Optional Stainless Steel		≈ 2.6 lbs
ROTATIONAL SPEED		≤ 12,000 rpm
MOMENT OF INERTIA		≤ 4.2 x 10 ⁻⁴ oz-in-sec ²
STARTING TORQUE AT 20°C		≤ 4.2 in-oz
SHAFT LOADING	Angle offset	± 0.9°
	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.1 mm
	Radial offset	Static: ± 0.5 mm; Dynamic: ± 0.2 mm
BEARING WORKING LIFE		> 4 x 10 ¹⁰ revolutions


Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP64

Connection Types

Dimensions

mm (in.)

Electrical Connection

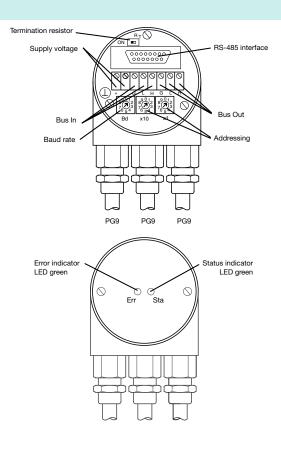
Terminal	Cable	Description
	_	Ground connection for power supply
(+)	Red	Power supply
(-)	Black	Power supply
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high
CG	_	CAN ground
CL	Blue	CAN low
CH	White	CAN high

Absolute Rotary Encoders

Configuration

Setting the member address

The member address can be set with the rotary switches. The address can be defined between 1 and 63, and each address may only be assigned once.


Adjusting the terminating resistor

The terminating resistor $R_T\,(121~\Omega)$ can be switched into the circuit with the switch:

 $\begin{array}{ccc} \text{Last member} & & \text{Member X} \\ \hline R_T & & R_T \\ \text{ON} & \hline & & \text{ON} & \hline \end{array}$

Baud rate in kBit/s	Rotary switch
125	0
250	1
500	2
125	3
Reserved	4-9

LED indicators

LED red	LED green	Meaning
off	off	No voltage supply
off	on	Encoder ready, boot-up message not transmitted yet. Possible reasons:
		no further participant present
		wrong baud rate
		encoder in prepared status
flashing	on	Boot-up message transmitted. Device configuration possible.
on	on	Normal operation mode, encoder in operational status.

Programming

Programmable CAN operating modes

Mode	Description
Polled mode	The connected host requests the current actual position value via a telegram. The absolute encoder reads in the current position, calculates all parameters that may have been set and then sends back the actual process value.
Cyclic mode	The absolute encoder sends the current process value depending on a programmable timer. This can cause the bus load to be reduced since the member on the network only sends a message after a specific amount of time without a prompt from the master.
Change of state mode	The absolute encoder monitors the current process value and transfers the current value by itself if there is any change in the value. This can cause the bus load to be reduced, since the member on the network only sends a message if there has been a change.

Programmable rotary encoder parameters

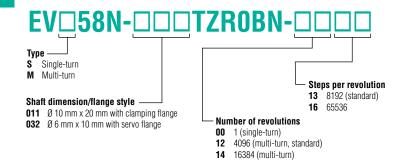
DSS58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.

DSM58

Parameter	Description
Operating parameter	The direction of rotation (complement) can be specified as the operating parameter. This parameter determines the direction of rotation in which the output code will be rising or declining.
Resolution per revolution	The "Resolution" parameter is used to program the rotary encoder so that a desired number of steps can be implemented in reference to a revolution.
Overall resolution	This parameter indicates the desired number of measurement units of the entire travel length. This value must not exceed the overall resolution of the absolute encoder.
Preset value	The preset value is the desired position value that must be achieved for a specific physical setting of the axis. The preset value parameter is used to set the actual position value to the desired actual process value.

EVS58/EVM58 Series Ethernet Interface


- Ethernet interface with TCP/IP
- Programmable via any web browser
- IP64
- Addressable via set switch
- Clamping or servo flange

The EVS58 and EVM58 series absolute encoders interface with Ethernet and support TCP/IP protocol. The integrated web server enables setup via any web browser. IP addresses are adjusted simply via rotary switches in the removable housing cover. They can operate in 3 modes: polled, change-of-state, or cyclic.

These solid shaft encoders are available in single- (16-bit resolution) or multi-turn (30-bit resolution) versions. They are available with a clamping flange or a servo flange.

Order Code

Example: EVS58N-011TZR0BN-0013

Technical Specifications

Electrical

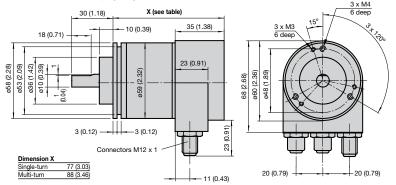
SUPPLY VOLTAGE	10-30 VDC	
POWER CONSUMPTION	≤ 4 W	
OUTPUT CODE	Binary	
LINEARITY	± 0.5 LSB at 12-bit	
COUNTING DIRECTION (Shaft End View)	Programmable	
INTERFACE Interface type	Ethernet TCP/IP	
Transfer rate	10 Mbit/s / 100 Mbit/s	
RESOLUTION Bits/steps per turn	16-bit / ≤ 65536	
Bits/number of turns	14-bit / ≤ 32768	
OVERALL Single-turn	≤ 16-bit	
RESOLUTION Multi-turn	≤30-bit	
CERTIFICATES C€	Yes	

Mechanical

MATERIAL Housing		Powder-coated aluminum
	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT	EVS	≈ 1.2 lbs
	EVM	≈ 1.5 lbs
ROTATIONAL SPEED		≤ 12,000 rpm
MOMENT OF INERT	ГІА	$\leq 4.2 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE AT 20°C		≤ 4.2 in-oz
SHAFT LOADING	Axial offset	9.0 lbs
	Radial offset	24.7 lbs
BEARING WORKING LIFE		> 4 x 10 ¹⁰ revolutions

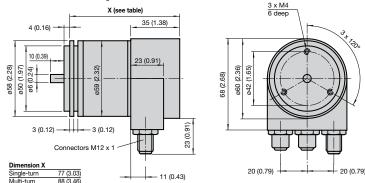
Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)	
OPERATING TEMPERATURE	0°C to +60°C (+32°F to +140°F)	
HUMIDITY	No moisture condensation	
SHOCK RESISTANCE	100 g for 6 ms	
VIBRATION RESISTANCE	10 g, 10-2,000 Hz	
ENCLOSURE RATING	IP64	


Connection Types

ETHERNET	2 female connectors M12 x 1, 4-pin, D-coded
SUPPLY	1 male connector M12 x 1, 5-pin, A-coded

Dimensions

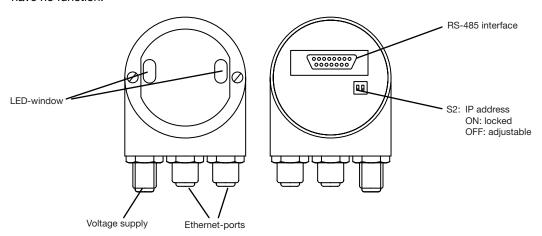

mm (in.)

Shaft option/flange style 011 Ø 10 mm x 20 mm with clamping flange

Shaft option/flange style 032

Ø 6 mm x 10 mm with servo flange

Electrical Connection


Pin	Male connector M12 x 1, 5-pin, A-coded	Female connector M12 x 1, 4-pin, D-coded	Female connector M12 x 1, 4-pin, D-coded
1	+ 24 V	Bx +	Rx +
2	+ 24 V	Tx +	Tx +
	+ 24 V	IX +	IX +
3	0 V	Rx –	Rx –
4	0 V	Tx –	Tx –
5	Ground		
	5	3	1

Absolute Rotary Encoders

Configuration

Setting the Member Address

Set switch S2 to position OFF to adjust the IP address. In switch position ON, the IP address is blocked to avoid unintentional changes. The rotary switches and switch S1 have no function.

LED indicators

LED	Color	Meaning
Rx1	yellow	Data traffic on port 1
Link1	green	Connection to another Ethernet device on port 1
Col1	red	Bus collision on port 1
Rx2	yellow	Data traffic on port 2
Link2	green	Connection to another Ethernet device on port 2
Col2	red	Bus collision on port 2
Err	red	Internal error

Technical Specifications

Electrical

SUPPLY VOLTAGE	10-30 VDC
POWER CONSUMPTION	≤ 4 W
OUTPUT CODE	Binary
LINEARITY	± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Interface type	Ethernet TCP/IP
Transfer rate	10 Mbit/s / 100 Mbit/s
RESOLUTION Bits/steps per turn	16-bit / ≤ 65536
Bits/number of turns	14-bit / ≤ 32768
OVERALL Single-turn	≤ 16-bit
RESOLUTION Multi-turn	≤30-bit
CERTIFICATES C€	Yes

Mechanical

MATERIAL Housing		Powder-coated aluminum	
Flange		Aluminum	
	Shaft	Stainless steel	
	Code disc	Plastic	
WEIGHT	ESS	≈ 1.2 lbs	
	ESM	≈ 1.5 lbs	
ROTATIONAL SPEE	D	≤ 12,000 rpm	
MOMENT OF INERTIA		\leq 4.2 x 10 ⁻⁴ oz-in-sec ²	
STARTING TORQUE	AT 20°C	≤ 4.2 in-oz	
SHAFT LOADING	Angle offset	± 0.9°	
	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.1 mm	
	Radial offset	Static: ± 0.5 mm; Dynamic: ± 0.2 mm	
BEARING WORKING LIFE		> 4 x 10 ¹⁰ revolutions	

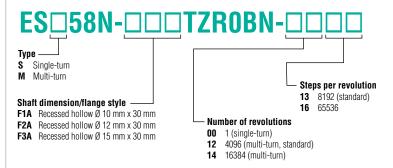
Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)	
OPERATING TEMPERATURE	0°C to +60°C (+32°F to +140°F)	
HUMIDITY	No moisture condensation	
SHOCK RESISTANCE	100 g for 6 ms	
VIBRATION RESISTANCE	10 g, 10-2,000 Hz	
ENCLOSURE RATING	IP64	

Connection Types

ETHERNET	2 female connectors M12 x 1, 4-pin, D-coded
SUPPLY	1 male connector M12 x 1, 5-pin, A-coded

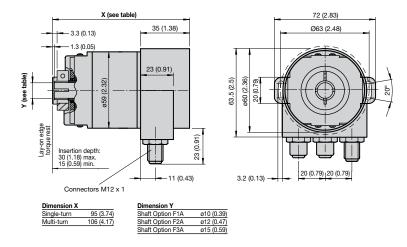
ESS58/ESM58 Series Ethernet Interface


- Ethernet interface with TCP/IP
- Programmable via any web browser
- IP64
- Addressable via rotary switch
- Recessed hollow shaft

The ESS58 and ESM58 series absolute encoders interface with Ethernet and support TCP/IP protocol. The integrated web server enables programming via any web browser. IP addresses are adjusted simply via rotary switches in the removable housing cover. They can operate in 3 modes: polled, change-of-state, or cyclic.

These recessed hollow shaft encoders are available in single-(16-bit resolution) or multi-turn (30-bit resolution) versions with a 10 mm, 12 mm, or 15 mm shaft bore.

Order Code

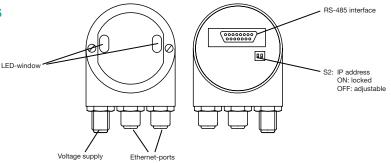


Example: ESS58N-F1ATZR0BN-0013

Absolute Rotary Encoders

Dimensions

mm (in.)


Electrical Connection

Pin	Male connector M12 x 1, 5-pin, A-coded	Female connector M12 x 1, 4-pin, D-coded	Female connector M12 x 1, 4-pin, D-coded
1	+ 24 V	Rx +	Rx +
2	+ 24 V	Tx +	Tx +
3	0 V	Rx –	Rx –
4	0 V	Tx -	Tx -
5	Ground		
	5	3	1

Configuration

Setting the Member Address

Set switch S2 to position OFF to adjust the IP address. In switch position ON, the IP address is blocked to avoid unintentional changes. The rotary switches and switch S1 have no function.

LED indicators

LED	Color	Meaning
Rx1	yellow	Data traffic on port 1
Link1	green	Connection to another Ethernet device on port 1
Col1	red	Bus collision on port 1
Rx2	yellow	Data traffic on port 2
Link2	green	Connection to another Ethernet device on port 2
Col2	red	Bus collision on port 2
Err	red	Internal error

Technical Specifications

Electrical

SUPPLY VOLTAGI		10-30 VDC
CURRENT CONSUMPTION		\leq 230 mA at 10 VDC, \leq 100 mA at 24 VDC
OUTPUT CODE		Binary
LINEARITY		± 2 LSB at 16-bit, ± 1 LSB at 13-bit, ± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)		Programmable
INTERFACE	Туре	PROFIBUS
	Transfer rate	\leq 0.00096 to 12 Mbits/s
RESOLUTION	Single-turn	16-bit / 65,536
	Multi-turn	14-bit / ≤ 16,384
OVERALL	Single-turn	16-bit
RESOLUTION	Multi-turn	30-bit
STANDARD CONFORMITY		PNO profile 3.062, RS-485
CERTIFICATES C €		Yes

Mechanical

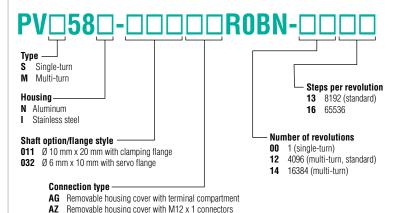
MATERIAL	Housing	Powder-coated aluminum
(Standard Model)	Flange	Aluminum
	Shaft	Stainless steel
	Code disc	Plastic
MATERIAL	Housing	Stainless steel
(Stainless Model)	Flange	Stainless steel
	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT PI	/S - Standard	≈ 1.2 lbs
PVS - Optional Stainless Steel		≈ 2.4 lbs
PV	M - Standard	≈ 1.3 lbs
PVM - Optional Si	ainless Steel	≈ 2.6 lbs
ROTATIONAL SPEE	D	≤ 12,000 rpm
MOMENT OF INERT	ΠA	$\leq 7.1 \times 10^{-4} \text{ oz-in-sec}^2$
STARTING TORQUE	AT 20°C	≤ 7.1 in-oz
SHAFT	Axial	9.0 lbs
LOADING	Radial	24.7 lbs
BEARING WORKING	G LIFE	> 4 x 10 ¹⁰ revolutions

Environmental

STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP64

Connection Types

TERMINAL CONNECTOR	Terminal compartment with 3 x PG9 cable glands


PVS58/PVM58 Series PROFIBUS Interface

- Industrial standard 58 mm diameter housing
- Single or multi-turn
- Servo flange and 6 mm diameter shaft or clamping flange and 10 mm diameter shaft
- Velocity output
- Inputs for counting direction, preset, and limit switches
- LED indication of operational mode, bus errors and wiring faults

Pepperl+Fuchs' PVS58 and PVM58 series absolute encoders interface with PROFIBUS and are available in either single-turn with 16-bit resolution, or multi-turn with 30-bit resolution versions. These models also feature a velocity output and programmable limit switches. Each encoder is individually addressable between 0 and 63 and has an IP65 aluminum housing.

Order Code

Example: PVS58N-011AGR0BN-0012

Dimensions

mm (in.)

Shaft option/flange style 011 Ø 10 mm x 20 mm with clamping flange

30 (1.18) X (see table)

18 (0.71)

18 (0.71)

18 (0.71)

30 (1.18)

30 (1.18)

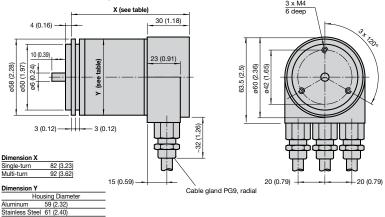
30 (1.18)

30 (1.18)

30 (1.18)

30 (1.18)

3 x M3 6 deep


3 (0.12)

15 (0.59)

3 (0.12) -

Shaft option/flange style 032

 \emptyset 6 mm x 10 mm with servo flange

20 (0.79)

20 (0.79)

Electrical Connection

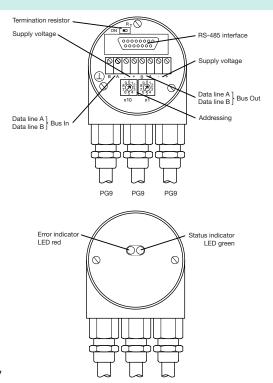
Terminal	Description
1	Ground connection for power supply
B (left)	Data line B (pair 1), Bus In
A (left)	Data line A (pair 1), Bus In
(-)	0 VDC
(+)	10 V 30 V
B (right)	Data line B (pair 2), Bus Out
A (right)	Data line A (pair 2), Bus Out
(-)	0 V
(+)	10 V 30 V
	The supply lines need to be connected only once (regardless to which terminal). The outgoing bus is uncoupled while the termination resistor is on.

Sold by AA Electric 1-800-237-8274 • Lakeland, FL • Lawrenceville, GA • East Rutherford, NJ Web: www.A-Aelectric.com Email: njsales@a-aelectric.com

Programming

Installation

The rotary encoder is connected with two or three cables depending on whether the power supply is integrated into the bus cable or connected separately. If the power supply is integrated into the bus cable, one of the cable glands can be plugged. The cable glands are suitable for cable diameters from 5.5 to 9 mm.


The PROFIBUS device address is set via the two rotary switches located within the removable housing cover. Any address from 1 to 99 is allowed but each can only be used once. Termination resistors are integrated into the housing cover and must be switched on if the encoder is connected at the beginning or end of the bus.

There are 2 sets of power supply terminals but it is only necessary to connect power to one set. The outgoing bus lines are disconnected if the terminating resistor is switched on.

On the back of the housing cover are 2 LEDs, which are used for device status and diagnostics.

Programmable Parameters

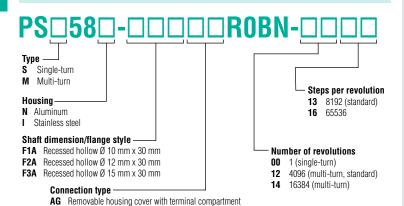
The PROFIBUS-DP interface supports Class 1 and Class 2 functionality per the encoder profile. In addition to these standard functions, the GSD file supports additional features such as software limit switches. The following parameters can be programmed directly via the PROFIBUS-DP network without any extra devices:

Parameter	Description
Counting direction	Determines the counting direction and whether the output code increases or decreases.
Resolution per revolution	Programs the desired number of steps per revolution. Any value between 1 and 65,536 can be used.
Total resolution	Programs the desired number of steps over the total measuring range of the encoder. This value cannot exceed the total physical resolution of the encoder.
Preset value	A desired position value (i.e., 0) to be set at a certain physical position of the axis. The position value is set to the desired process value via this parameter. This parameter is used to "zero" the encoder at any time to start at a reference point.
Velocity	The software can also output the current velocity. This value is given in a 16-bit binary code after the process value. It is possible to choose between four different units: steps per 10 ms, per 1 s and revolutions per minute.
Software limit switches	Sets the minimum and maximum values. Two software limit switches can be set. If these values are exceeded, a bit in the output word is set.
Teach-in	A special mode for setting up the encoder that changes parameters while the encoder transfers data. For continuous operation a second mode is available in which parameters are protected against unintentional changes.

LED Indicators

LED Red	LED Green	Meaning
Off	Off	No voltage supply.
On	On	Encoder ready, no configuration data received. Possible reasons: • Wrong address adjusted • Wrong bus wiring
On	Flashing	Parameter or configuration error — encoder received data of incorrect length or inconsistent data. Possible reason: • Adjusted encoder resolution exceeded
Flashing	On	Encoder ready, no communication (i.e. wrong address adjusted).
On	Off	Data timeout (> 40 s) (i.e., data lines interrupted).
Off	On	Normal operation, Data Exchange Mode.
Off	Flashing	Installation mode in Data Exchange Mode.

PSS58/PSM58 Series PROFIBUS Interface


- Industrial standard 58 mm diameter housing
- 10 mm or 12 mm bore diameter recessed hollow shaft
- Single or multi-turn
- Velocity output
- Inputs for counting direction, preset, and limit switches
- LED indication of operational mode, bus errors and wiring faults

Pepperl+Fuchs' PSS58 and PSM58 series absolute encoders feature recessed hollow shafts and interface with PROFIBUS. Available in either single-turn with 16-bit resolution, or multi-turn with 30-bit resolution versions. These models also feature a velocity output and programmable limit switches. Each encoder is individually addressable between 0 and 63 and has an IP65 aluminum housing.

Order Code

Example: PSS58N-F1AAGR0BN-0012

AZ Removable housing cover with M12 x 1 connectors

Technical Specifications

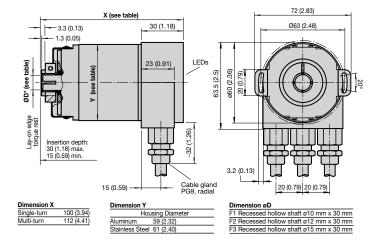
Electrical

SUPPLY VOLTAGE	10-30 VDC
CURRENT CONSUMPTION	\leq 230 mA at 10 V DC,
	≤ 100 mA at 24 V DC
OUTPUT CODE	Binary
LINEARITY	± 2 LSB at 16-bit,
	± 1 LSB at 13-bit,
	± 0.5 LSB at 12-bit
COUNTING DIRECTION (Shaft End View)	Programmable
INTERFACE Interface type	PROFIBUS
Transfer rate	≤ 0.5 Mbit/s
RESOLUTION Bits/steps per turn	16-bit / 65536
Bits/number of turns	14-bit / ≤ 16384
OVERALL Single-turn	16-bit
RESOLUTION Multi-turn	30-bit
CERTIFICATES C€	Yes

Mechanical

Material –	Housing	Powder-coated aluminum
STANDARD	Flange	Aluminum
	Shaft	Stainless steel
MATERIAL –	Housing	Stainless steel
OPTIONAL	Flange	Stainless steel
_	Shaft	Stainless steel
	Code disc	Plastic
WEIGHT DSS	- Standard	≈ 1.2 lbs
DSS - Optional Stair	nless Steel	≈ 2.4 lbs
DSM	- Standard	≈ 1.3 lbs
DSM - Optional Stair	nless Steel	≈ 2.6 lbs
ROTATIONAL SPEED		≤ 12,000 rpm
MOMENT OF INERTIA	١	≤ 4.2 x 10 ⁻⁴ oz-in-sec ²
STARTING TORQUE A	NT 20°C	≤ 4.2 in-oz
SHAFT LOADING A	ngle offset	± 0.9°
_/	Axial offset	Static: ± 0.3 mm; Dynamic: ± 0.1 mm
Ra	adial offset	Static: ± 0.5 mm; Dynamic: ± 0.2 mm
BEARING WORKING LIFE		> 4 x 10 ¹⁰ revolutions

Environmental


STORAGE TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
OPERATING TEMPERATURE	-40°C to +85°C (-40°F to +185°F)
HUMIDITY	No moisture condensation
SHOCK RESISTANCE	100 g for 6 ms
VIBRATION RESISTANCE	10 g, 10-2,000 Hz
ENCLOSURE RATING	IP64

Connection Types

TERMINAL CONNECTOR Terminal compartment with 3 x PG9 cable glands

Dimensions

mm (in.)

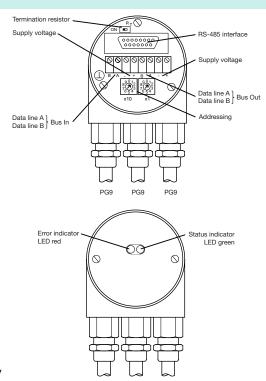
Electrical Connection

Terminal	Description
	Ground connection for power supply
B (left)	Data line B (pair 1), Bus In
A (left)	Data line A (pair 1), Bus In
(-)	0 VDC
(+)	10 V 30 V
B (right)	Data line B (pair 2), Bus Out
A (right)	Data line A (pair 2), Bus Out
(-)	0 V
(+)	10 V 30 V
	The supply lines need to be connected only once (regardless to which terminal). The outgoing bus is uncoupled while the termination resistor is on.

Programming

Installation

The rotary encoder is connected with two or three cables depending on whether the power supply is integrated into the bus cable or connected separately. If the power supply is integrated into the bus cable, one of the cable glands can be plugged. The cable glands are suitable for cable diameters from 5.5 to 9 mm.


The PROFIBUS device address is set via the two rotary switches located within the removable housing cover. Any address from 1 to 99 is allowed but each can only be used once. Termination resistors are integrated into the housing cover and must be switched on if the encoder is connected at the beginning or end of the bus.

There are 2 sets of power supply terminals but it is only necessary to connect power to one set. The outgoing bus lines are disconnected if the terminating resistor is switched on.

On the back of the housing cover are 2 LEDs, which are used for device status and diagnostics.

Programmable Parameters

The PROFIBUS-DP interface supports Class 1 and Class 2 functionality per the encoder profile. In addition to these standard functions, the GSD file supports additional features such as software limit switches. The following parameters can be programmed directly via the PROFIBUS-DP network without any extra devices:

Parameter	Description
Counting direction	Determines the counting direction and whether the output code increases or decreases.
Resolution per revolution	Programs the desired number of steps per revolution. Any value between 1 and 65,536 can be used.
Total resolution	Programs the desired number of steps over the total measuring range of the encoder. This value cannot exceed the total physical resolution of the encoder.
Preset value	A desired position value (i.e., 0) to be set at a certain physical position of the axis. The position value is set to the desired process value via this parameter. This parameter is used to "zero" the encoder at any time to start at a reference point.
Velocity	The software can also output the current velocity. This value is given in a 16-bit binary code after the process value. It is possible to choose between four different units: steps per 10 ms, per 1 s and revolutions per minute.
Software limit switches	Sets the minimum and maximum values. Two software limit switches can be set. If these values are exceeded, a bit in the output word is set.
Teach-in	A special mode for setting up the encoder that changes parameters while the encoder transfers data. For continuous operation a second mode is available in which parameters are protected against unintentional changes.

LED Indicators

LED Red	LED Green	Meaning
Off	Off	No voltage supply.
On	On	Encoder ready, no configuration data received. Possible reasons: • Wrong address adjusted • Wrong bus wiring
On	Flashing	Parameter or configuration error — encoder received data of incorrect length or inconsistent data. Possible reason: • Adjusted encoder resolution exceeded
Flashing	On	Encoder ready, no communication (i.e. wrong address adjusted).
On	Off	Data timeout (> 40 s) (i.e., data lines interrupted).
Off	On	Normal operation, Data Exchange Mode.
Off	Flashing	Installation mode in Data Exchange Mode.

Sold by AA Electric 1-800-237-8274 • Lakeland, FL • Lawrenceville, GA • East Rutherford, NJ Web: www.A-Aelectric.com Email: njsales@a-aelectric.com

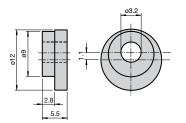
Accessories

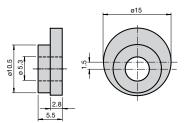
Connectors and Cordsets	100
Synchro Clamping Elements	101
Mounting Brackets	101-102
Couplings	103
Measuring Wheels	104
Cable Pulls	105-107

Connectors and Cordsets

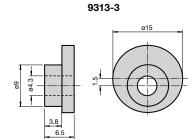
Model Number	Cable Length	No. of Pins	Туре	Protection	Color Code	For Series	
V1-G	Connector only*				1 Brown	DVOCO/DV/MCO	
V1-G-YE2M-PVC	2 m, molded	4	Female	IP67	2 White 3 Blue	BVS58/BVM58, BSS58/BSM58	
V1-G-YE5M-PVC	5 m, molded				4 Black		
V15-G	Connector only*				1 Brown 2 White	EVS58/EVM58,	
V15-G-YE2M-PVC	2 m, molded	5	Female	IP67	3 Blue 4 Black	ESS58/ESM58, PVS58/PVM58,	
V15-G-YE5M-PVC	5 m, molded				5 Gray	PSS58/PSM58	
42306A	Connector only*				1 Green 2 White		
42306A-02M-05P-RVI50/78	2 m	6	Female	IP67	3 Yellow 4 Red	RVI78	
42306A-05M-05P-RVI50/78	5 m				5 Black 6 N.C.		
42306B	Connector only*		D: 1.		1 Green 2 White		
42306B-02M-05P-RVI50/78	2 m	6	Right-angle Female	IP67	3 Yellow 4 Red	RVI78	
42306B-05M-05P-RVI50/78	5 m		7 0111410		5 Black 6 N.C.		
42306C	Connector only*	6	Male	IP67	_	Mating connector for 92306	
MS3106A16S-1S	Connector only*				A Green E Red		
MS16-10FT	10 ft	7	Female	IP67	B Black F White C Blue G Shield	RVI25 (type AR)	
MS16-20FT	20 ft				D Brown		
MS3106A18-1S	Connector only*				A Green F White B Black G Shield		
MS18-10FT	10 ft	10	Female	IP67	C Blue H Yellow D Brown I Violet	RVI25 (type AS)	
MS18-20FT	20 ft				E Red J Gray		
9416	Connector only*				1 Pink 7 Gray/Pink 2 Violet 8 Gray	RVI58 (type AA), RVI50, Series 30,	
9416-02M-12P-RXI58	2 m	12	Female	IP68	3 Blue 9 N.C. 4 Red 10 White	RSI58, AVS58/AVM58 (type AA),	
9416-05M-12P-RXI58	5 m				5 Green 11 Black 6 Yellow	ASS58/AVS58 (type AA), RHI90	
9416L	Connector only*				1 Pink 7 Gray/Pink 2 Violet 8 Gray	RVI58 (type AB),	
9416L-02M-12P-RXI58	2 m	12	Female	IP68	3 Blue 9 N.C. 4 Red 10 White	AVS58/AVM58 (type AB),	
9416L-05M-12P-RXI58	5 m				5 Green 11 Black 6 Yellow	ASS58/AVS58 (type AB), RHI90	
9416C	Connector only*	12	Male	IP68	_	Mating connector for 9416	
9424	Connector only*				1 Green 8 Black 15 White/Yellow 2 Yellow 9 Violet 16 White/Pink		
9424-02M-24P-SCS	2 m	19	Female	IP68	3 Gray 10 Gray/Pink 17 Pink/Brown 4 Pink 11 Red/Blue 18 Brown/Blue 5 Blue 12 White 19 Brown/Red	FVS58/FSS58	
9424-05M-24P-SCS	5 m				6 Brown 13 White/Green 7 Red 14 Brown/Green		
9426	Connector only*				1 White 10 Violet 19 White/Pink 2 Brown 11 Gray/Pink 20 Pink/Brown 3 Green 12 Red/Blue 21 White/Blue		
9426-02M-32P-SCM	2 m	26	Female	IP67	4 Yellow 13 White/Green 22 Brown/Blue 5 Gray 14 Brown/Green 23 Gray/Green 6 Pink 15 White/Yellow 24 Yellow/Gray	FVM58/FSM58	
9426-05M-32P-SCM	5 m				7 Blue 16 Yellow/Brown 25 Pink/Green 8 Red 17 White/Gray 26 Yellow/Pink 9 Black 18 Gray/Brown		
9426C	Connector only*	26	Male	IP67	-	Mating connector for 9426	

^{*} Field-attachable connector—cable provided by customer.



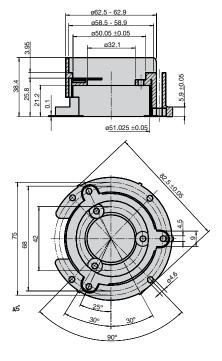

Synchro Clamping Elements (set of 3)

Model Number	For Series
9310-3	AV□58, BV□58, CV□58, DV□58, EV□58,
	FV□58, PV□58, RVI58, TVI58
9312-3	RVI50, RVI78, RVI84
9313-3	RVI50



9310-3

9312-3



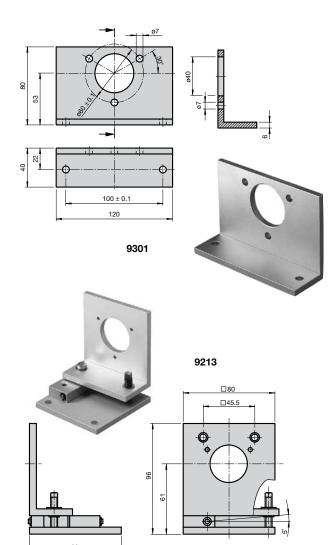
Mounting Brackets

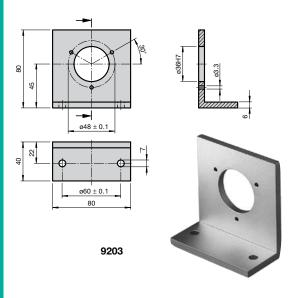
Mounting Bracket for Servo Flange

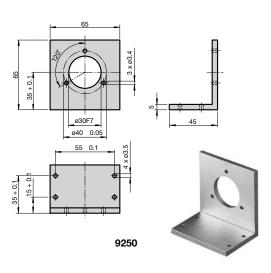
Model Number	For Series					
9300	AV□58, BV□58, CV□58, DV□58, EV□58,					
	FV□58, PV□58, RVI58, TVI58					

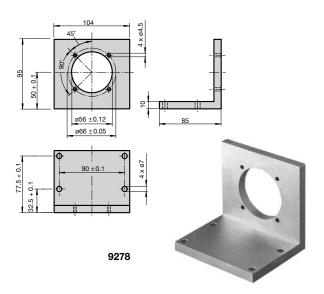
Mounting Set for Bracket 9300

Model Number	For Series					
9311	AV□58, BV□58, CV□58, DV□58, EV□58,					
	FV□58, PV□58, RVI58, TVI58					

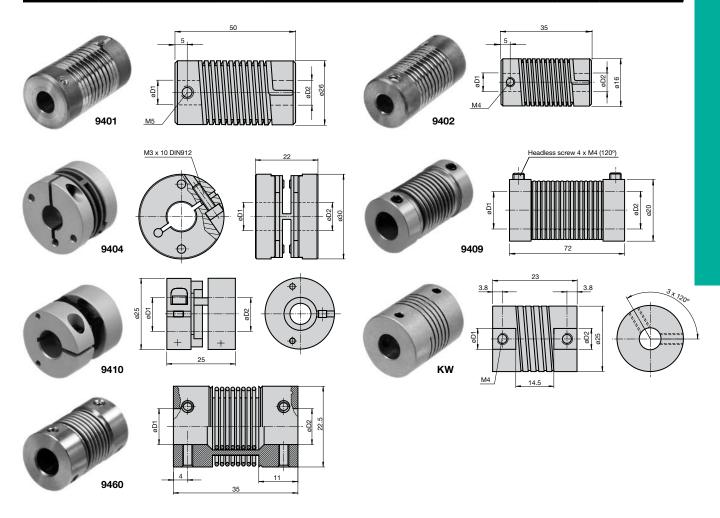





Mounting Brackets (cont.)


Mounting Bracket for Clamping Flange

Model Number	For Series
9301	30
9203	AV□58, BV□58, CV□58, DV□58, EV□58,
	FV□58, PV□58, RVI58, TVI58
9213	AV□58, BV□58, CV□58, DV□58, EV□58,
	FV□58, PV□58, RVI58, TVI58
9250	RVI50, TVI50
9278	RVI78

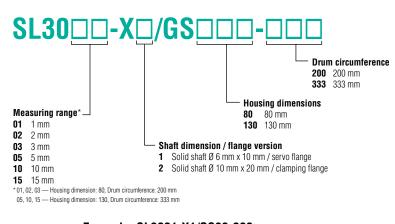


Couplings

Model Number	Dimension D1*	Dimension D2*	Туре	Max. Speed	Rated Torque	Max. Radial Misalignment	Max. Axial Misalignment	Max. Angular Error	Max. Torque	Material
9401 6 x 6	6 mm	6 mm	7,		10.40		<u> </u>		<u> </u>	
9401 8 x 8	8 mm	8 mm						±5°	10.6 in-lb	
9401 10 x 10	10 mm	10 mm	Spring steel	3000 rpm	13.3 in-lb	±1.5 mm	±1 mm			Nickel-coated
9401 12 x 12	12 mm	12 mm	Spring Steel	3000 Ipili	13.3 111-10			_ ±3	וויווי ט.טו	spring steel
9401 9.52 x 9.52	3/8 in.	3/8 in.								
9401 6.35 x 6.35	1/4 in.	1/4 in.								
9402 6 x 6	6 mm	6 mm								Nielsel eested
9402 8 x 8	8 mm	8 mm	Spring steel	3000 rpm	4.4 in-lb	±1 mm	±1 mm	±5°	-	Nickel-coated Spring steel, die-cast zinc
9402 9.52 x 9.52	3/8 in.	3/8 mm	Spring Steel	3000 (рін				±5		
9402 6.35 x 6.35	1/4 in.	1/4 in.								
9404 6 x 6	6 mm	6 mm		12000 rpm	5.3 in-lb	±0.3 mm	±0.4 mm	±2.5°	ı	Flanges: aluminum spring disks: plastic
9404 10 x 10	10 mm	10 mm	Spring disk							
9404 12 x 12	12 mm	12 mm								
9409 6 x 6	6 mm	6 mm			n 7.1 in-lb	±0.3 mm	±0.4 mm	±5°	10.6 in-lb	Nickel-coated zinc
9409 10 x 10	10 mm	10 mm	Bellows	8000 rpm						
9409 12 x 12	12 mm	12 mm								
9410 6 x 6	6 mm	6 mm				±0.5 mm	±0.3 mm	±2.5°	11.5 in-lb	Delrin,
9410 10 x 10	10 mm	10 mm	Precision	15000 rpm	8.9 in-lb					aluminum alloy, hard-coated
9410 12 x 12	12 mm	12 mm								
KW 6 x 6	6 mm	6 mm								Nickel-coated
KW 8 x 8	8 mm	8 mm	Helical	8000 rpm	7.1 in-lb	±0.3 mm	±0.5 mm	±4°	13.3 in-lb	zinc
KW 10 x 10	10 mm	10 mm								2.110
9460 6 x 6	6 mm	6 mm								Ctainless
9460 10 x 10	10 mm	10 mm	Bellows	7000 rpm	8.9 in-lb	±0.2 mm	±0.6 mm	±3°	-	Stainless steel
9460 12 x 12	12 mm	12 mm								31001

Measuring Wheels

Measuring wheels attach directly to the encoder's shaft using setscrews and are designed to roll along the surface of moving objects. As material moves beneath the wheel, the wheel turns the encoder shaft. A larger wheel will provide higher resolution. All of P+F's measuring wheels are designed to mount on a standard 8 or 10 mm diameter shaft.


Model	Number					
8 mm Shaft	10 mm Shaft	Material	Circumference	Diameter D	Width B	_
9101, 8	9101, 10	Hytrel				B = 1
9102, 8	9102, 10	Dimpled rubber Nitril (NBR)	500 mm	159 mm	25 mm	
9103, 8	9103, 10	Knurled aluminum		100 111111	20	
9112, 8	9112, 10	Knurled Hytrel				
9108, 8	9108, 10	Hytrel				Circumference 200 mm: M4
9109, 8	9109, 10	Dimpled rubber Nitril (NBR)	200 mm	64 mm	12 mm	Circumference 500 mm: M5
9110, 8	9110, 10	Knurled aluminum	200			
9113, 8	9113, 10	Knurled Hytrel				8
	9101	9102		9103	91	12
	6	6		80	(

Cable Pulls

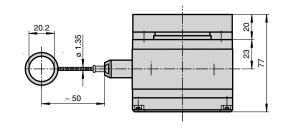
Cable pulls enable a rotary encoder to measure linear motion by providing a cable that is pulled in a straight line by the application. Internally, the cable is wrapped around a spring-loaded drum that turns the encoder's shaft when the cable is extended. A standard 58 mm diameter encoder mounts to the adapter with synchro mounting elements. Different lengths are available for a wide variety of applications.

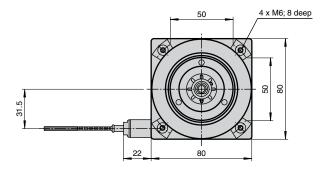
Technical Data	SL3001-X1 / GS80-200	SL3002-X1 / GS80-200	SL3003-X1 / GS80-200	SL3005-X1 / GS130-333	SL3010-X1 / GS130-333	SL3015-X1 / GS130-333
General Specifications						
Measuring Range (cable length)	1 m	2 m	3 m	5 m	10 m	15 m
Maximum Travel Speed	8 m/s	8 m/s	8 m/s	10 m/s	8 m/s	7 m/s
Acceleration	40 m/s ²	40 m/s ²	40 m/s ²	70 m/s ²	40 m/s ²	30 m/s ²
Drum Circumference	200 mm	200 mm	200 mm	333 mm	333 mm	333 mm
Linearity Error (typical)	0.1% / 0.5%	0.1% / 0.5%	0.1% / 0.5%	0.1% / 0.5%	0.1% / 0.5%	0.1% / 0.5%
Resolution	200 mm /	200 mm /	200 mm /	333 mm /	333 mm /	333 mm /
	encoder resolution	encoder resolution	encoder resolution	encoder resolution	encoder resolution	encoder resolution
Ambient Conditions				,		
Shock Resistance	25 g	25 g	25 g	25 g	25 g	25 g
Mechanical Specifications	_			'		
Cable Diameter	1.35 mm	1.35 mm	1.35 mm	1.35 mm	1.35 mm	1.35 mm
Tension Force on Cable	5-9 N	5-12 N	5-15 N	10-21 N	10-21 N	10-21 N
Lifetime	10 ⁶ cycles	10 ⁶ cycles	10 ⁶ cycles	10 ⁶ cycles	10 ⁶ cycles	10 ⁶ cycles
Weight	2 lbs	2.6 lbs	3.3 lbs	5.5 lbs	7.7 lbs	11.0 lbs

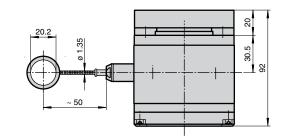
Order Code

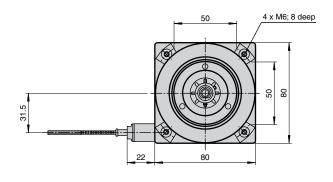
Example: SL3001-X1/GS80-200

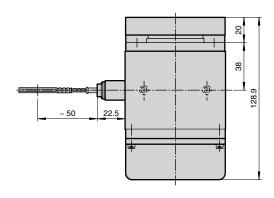
SL3001 SL3002

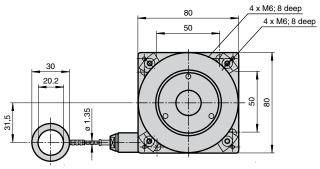



SL3005 SL3010 SL3015

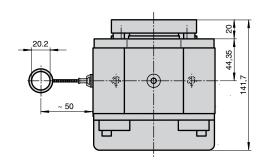

Cable Pulls (cont.)

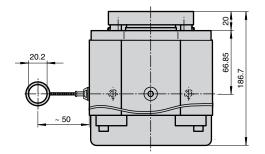

SL3001

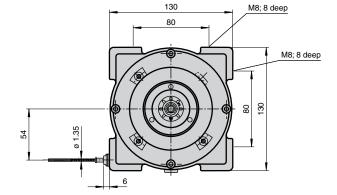


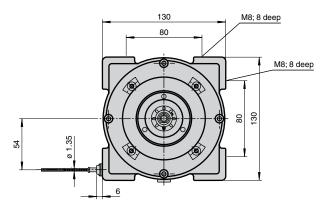

SL3002

SL3003

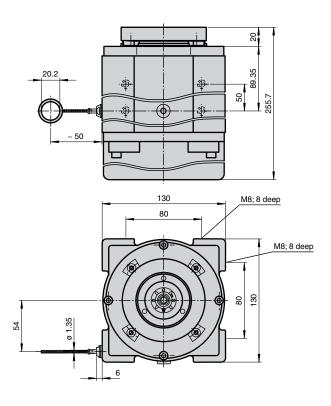





CONTINUED


Cable Pulls (cont.)

SL3005



SL3015

SL3010

Appendix

Glossary

Absolute encoder

Absolute encoders provide a distinctly coded numerical value for each shaft position. The internal material measure permits the read-out of an absolute measured value after a supply voltage has been applied. A reference run is not required.

Binary code

Code based on binary digits 0 and 1, which is used by absolute encoders.

Changeable code frequency

Maximum number of measuring step changes per second.

Channel

Signal trace of the incremental rotary encoder.

Code progression

See Selection of count direction.

Fall time

Duration for an electrical signal to change from high to low level.

Gray code

Code similar to binary code in which only one bit changes from step to step. Higher data safety due to one-unitdistance and cyclical code. This code has to be converted into the binary code for data processing.

Gray excess code

This code is an extract of Gray code, which is used for the representation of angular steps.

Example: 360 steps

In this case 9 bits are required, which corresponds to 512 steps. The extract of the code is symmetrical. It starts at 76 and ends at 436. The difference between the beginning and end is 360 steps.

Incremental encoder

These encoders supply a frequency proportional to the speed or a number of electrical pulses proportional to the angle. A reference run should be carried out after a loss of voltage.

LATCH

Storage function: By activating this input of the absolute encoder the present value measured is "frozen". The output will not change despite the shaft rotating.

If the input is deactivated, every new step measured is output (transparent latch).

LSB

Least Significant Bit.

MSB

Most Significant Bit.

Multiturn

An absolute encoder which counts the number of shaft revolutions of the shaft.

No load current

Power consumption of the encoder without load connected.

Number of pulses

Resolution of the incremental rotary encoder. This resolution indicates the number of pulses per revolution.

Offset

Value which is continuously added to a value measured.

Open Collector (OC)

Open collectors are differentiated according to OC-PNP and OC-NPN output stages. The latter inverts the output signals.

OC output stages are replaced by the push-pull output stage in incremental and absolute encoders.

The inverted behavior of the OC/NPN output stage has to be observed in absolute encoders.

Operating current

Indicates the permissible current load of the channel.

Operating temperature

Temperature range in which an encoder can be used, as long as the values and tolerances mentioned in the data sheet are maintained.

Operating voltage

Voltage supply of the encoder (U_b).

Output frequency

The maximum signal frequency of the encoder, which comprises the number of pulses and the rotation speed.

Overall resolution

Addition of single-turn and multi-turn resolutions. This is expressed in number of bits.

Parity

Control bit to recognize failures in data transmission.

Phase position

Misalignment of the flanks of channels A and B of an incremental rotary encoder.

PRESET 1

Reset of the control input. This action is used for electronic adjustment of the absolute encoder output to zero.

PRESET 2

Control input used to set the value measured to a quarter of the single-turn resolution. This is used for electronic adjustment of the absolute encoder. In case of programmable absolute encoders, a value other than one quarter of the single-turn resolution can be entered.

Push-pull output

The push-pull output is a combination of NPN and PNP outputs.

Resolution

Number of measuring steps per revolution or number of revolutions of an absolute encoder.

Rise time

Duration for an electrical signal to change from low to high level.

RS-232

Asymmetrical, serial, unidirectional interface between PC and programmable absolute encoder.

RS-422

Symmetrical, serial, bidirectional interface. This interface is used in incremental rotary encoders to transmit antivalent pulse channels: A, A, B, B, Z, Z. In case of absolute encoders with SSI interface for the transmission of cycles and data: cycle(+), cycle(-), data(+), data(-). Each signal pair is passed through twisted pair cables.

RS-485

Symmetrical, serial, bidirectional interface. Basis for many fieldbus systems.

Scaling

The number of steps per revolution. The number of revolutions of a multi-turn can be set to between 1 and 4,096 depending on the type of encoder.

Selection of count direction

This control input can be used to define whether the absolute encoder is to generate increasing values when the shaft rotates clockwise (CW) or counter clockwise (CCW). The shaft is always viewed from the shaft end.

Sense (-)

Used for the measurement of the effective encoder supply voltage together with Sense+. Permits automatic compensation of the power drop due to the encoder cable.

Sense (+)

Used for the measurement of the effective encoder supply voltage together with Sense-. Permits automatic compensation of the power drop due to the encoder cable.

Shaft load

The maximum permissible axial and radial force on the encoder shaft. The force contact point is the center of the shaft stub. If these forces are exceeded, the service life of the bearing can be greatly reduced. Furthermore, there is a danger of causing irreparable damage to the encoder.

Single-turn

Absolute encoder that delivers a defined number of measuring steps within one revolution. After completion of the revolution, the measured value returns from the maximum to the minimum value (ex. 8192 to 0).

Speed

The speed indicates the mechanical load limit of the encoder. If this limit is exceeded, the service life of the bearing can be negatively affected. In addition, the signal generation can be disturbed.

SSI

Synchronous Serial Interface. Used with absolute encoders.

Starting torque

Torque required to accelerate the encoder shaft from standstill.

Storage temperature

Permissible temperature limit values for an encoder that is neither electrically connected nor mechanically stressed.

Track

See Channel.

Transmission rate

Speed of data transmission in absolute encoders.

Tristate

Absolute encoders with a parallel interface can be set to a high-resistance state with using tristate input. This permits multiplex operation, allowing several encoders to be connected to one I/O point.

Voltage drop

Difference between supply voltage Ub and the maximum high level.

V/R input

See selection of count direction.

Zero setting

See PRESET 1.

IP Ratings

Definition:

The first numeral defines the amount of protection against penetration of solid objects into the housing.

The second numeral defines the amount of protection against liquids penetrating the housing. Additional information on ratings can be found in the following chart or the 1976 IEC Publication, Classification of Degrees of Protection Provided by Enclosures.

Example: What is IP67?

Complete protection of live parts. Protection against the penetration of dust. Additionally, it will be protected while immersed in water.

Testing Criteria:

1. Test Class: IP67 test

Conditions: 1m head of water over the test

piece for a duration of 30 minutes.

Room temperature ±5°C

Test: Insulation and operation

2. Test Class: IP68 test (Encapsulated products)

Conditions: 1m head of water over the test

piece for 24 hours of operation under water, with cyclical activation and deactivation under nominal loading Cycle time 2 hours

Room temperature ±5°C

Test: Insulation and operation

Degree of Protection Against Contact and Entrance of Solid Foreign Bodies

Numeral Degree of Protection

- No protection against contact or entry of solids
- Protection against accidental contact by hand, but not deliberate contact.
 Protection against large objects.
- 2 Protection against contact by fingers. Protection against medium-size foreign objects.
- 3 Protection against contact by most tools, wires and small objects.
- 4 Protection against contact by small tools, wires and small objects.
- Protection against contact with energized or moving parts, and against deposits of dust.
- 6 Protection from energized or moving parts, and against penetration of dust.

Degree of Protection Against Ingress of Liquid

Numeral Degree of Protection

- 0 No protection
- Protection against drops
 of condensed water. Condensed
 water falling on housing shall have no
 effect.
- Protection against drops of liquid. Drops of falling liquid shall have no effect when housing is tilted to 15° from vertical.
- 3 Protection against rain. No harmful effect from rain at angle less than 60° from vertical.
- 4 Protection against splashing from any direction.
- 5 Protection against water jets from any direction.
- 6 Protection against conditions on ships' decks. Water from heavy seas will not enter.
- 7 Protection against immersion in water for the stated conditions.
- Protection against indefinite immersion in water at a specified pressure.
- 9 Protection against high pressure, high temperature washdown

Pepperl+Fuchs Warranty Terms and Conditions

STANDARD 18-MONTH WARRANTY

Subject to the conditions and requirements set forth herein, P+F warrants the products covered by the respective warranties to be free from defects in material and workmanship under normal and proper usage for the respective time periods listed above from the date of shipment from P+F (or from an authorized representative or distributor of P+F). In addition, certain specific terms apply to various warranties.

THESE EXPRESS WARRANTIES ARE IN LIEU OF AND EXCLUDE ALL OTHER REPRESENTATIONS MADE — BOTH EXPRESS AND IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE PRODUCTS ARE FREE OF ANY CLAIM OF ANY THIRD PERSON BY WAY OF INFRINGEMENT OR THE LIKE, and are also in lieu of and exclude any promise, description, affirmation of fact, sample model or representation, oral or written, which may be part of an order or made by a representative of P+F or otherwise. This WARRANTY shall not apply to any product which has been subject to misuse, negligence, or accident, or to any product which has been modified or repaired, improperly installed, altered or disassembled (except according to P+F's written instructions) or any product if the machinery, equipment, or production line to which the product is originally connected or on which the product is originally installed is abandoned, changed, substituted, moved or replaced or if the product is removed from such machinery, equipment or production line or other original application.

This WARRANTY is subject to the following conditions:

- 1) This WARRANTY is limited to the electronic and mechanical performance only, as expressly detailed in the product specifications and NOT to cosmetic performance.
- 2) This WARRANTY shall not apply to any cables attached to, or integrated with the product. However, it shall apply to cables sold separately by P+F.
- 3) This WARRANTY shall not apply to any products which are stored, or utilized, in harsh environmental or electrical conditions outside P+F's written specifications.
- 4) The WARRANTY is applicable only to products shipped from P+F subsequent to January 1, 1992.
- 5) All claims under this WARRANTY must be made in writing within thirty (30) days of the date on which the defect is (or, with reasonable diligence, should have been) discovered.

PRODUCTS TO WHICH STANDARD 18-MONTH WARRANTY APPLIES

Ultrasonic sensors, level controls, photoelectric sensors, read-write ID systems, encoders, counters, signal conditioners and all products with electromechanical relays or circuit breakers.

CONSIDER SAFETY AND PROTECTION PRECAUTIONS

P+F takes great care to design and build reliable and dependable products; however, some products can fail eventually. You must take precautions to design your equipment to prevent property damage and personal injury in the unlikely event of failure. As a matter of policy, P+F does NOT recommend the installation of electronic controls as the sole device FOR THE PROTECTION OF PERSONNEL in connection with power driven presses, brakes, shears and similar equipment and, therefore, the customer should build in redundancy or dual control using approved safety devices for these applications.

DELIVERY

Pepperl+Fuchs® Inc. will deliver its products F.O.B. from its warehouse, place of manufacture or other place from which the products are actually shipped within the U.S.A.

Freight charges will be prepaid and added to invoice.

Appendix

Model Number Index

42306A	100
42306A-02M-05P-RVI50/78	100
42306A-05M-05P-RVI50/78	100
42306B	100
42306B-02M-05P-RVI50/78	100
42306B-05M-05P-RVI50/78	100
42306C	100
9101, 10	104
9101, 8	104
9102, 10	104
9102, 8	104
9103, 10	104
9103, 8	104
9108, 10	104
9108, 8	104
9109, 10	104
9109, 8	104
9110, 10	104
9110, 8	104
9112, 10	104
9112, 8	104
9113, 10	104
9113, 8	104
9203	102
9213	102
9250	102
9278	102
9300	101
9301	102
9310-3	101
9311	101
9312-3	101
9313-3	101
9401 10 x 10	103
9401 12 x 12	103
9401 6 x 6	103
9401 6.35 x 6.35	103
9401 8 x 8	103
9401 9.52 x 9.52	103
9402 6 x 6	103
9402 6.35 x 6.35	103
9402 8 x 8	103
9402 9.52 x 9.52	103
9404 10 x 10	103

9404 12 x 12 103	3
9404 6 x 6 103	3
9409 10 x 10 103	}
9409 12 x 12 103	}
9409 6 x 6 103	3
9410 10 x 10 103	}
9410 12 x 12 103	3
9410 6 x 6 103	}
9416100)
9416-02M-12P-RXI58 100)
9416-05M-12P-RXI58 100)
9416C 100)
9416L100)
9416L-02M-12P-RXI58 100)
9416L-05M-12P-RXI58 100)
9424100)
9424-02M-24P-SCS 100)
9424-05M-24P-SCS 100)
9426100)
9426-02M-32P-SCM100)
9426-05M-32P-SCM100)
9426C 100)
9460 10 x 10 103	3
9460 12 x 12 103	3
9460 6 x 6 103	3
ASM58 Series60)
ASS58 Series 60)
AVM58 Series 56	;
AVS58 Series 56	;
BSM58 Series68	3
BSS58 Series 68	3
BVM58 Series64	ļ
BVS58 Series 64	ļ
CSM58 Series76	;
CSS58 Series 76	ò
CVM58 Series72	<u>-</u>
CVS58 Series72	<u>, </u>
DSM58 Series 84	ŀ
DSS58 Series 84	ļ
DVM58 Series80)
DVS58 Series80)
ESM58 Series	
ESS58 Series	
EVM58 Series 88	3

EVS58 Series	00
FSM58 Series	
FSS58 Series	
FVM58 Series	
FVS58 Series	
KW 10 x 10	
KW 6 x 6	
KW 8 x 8	
MS16-10FT	
MS16-20FT	
MS18-10FT	
MS18-20FT	
MS3106A16S-1S	
MS3106A18-1S	
PSM58 Series	
PSS58 Series	
PVM58 Series	
PVS58 Series	
RHI58 Series	
RHI90 Series	
RSI58 Series	
RVI25 Series	
RVI50 Series	
RVI58 Series	28
RVI78 Series	
RVI84 Series	44
Series 30	
SL3001-X1/GS80-200	105
SL3002-X1/GS80-200	
SL3003-X1/GS80-200	105
SL3005-X1/GS130-333	105
SL3010-X1/GS130-333	105
SL3015-X1/GS130-333	105
THI58 Series	32
TSI40 Series	30
TVI40 Series	20
TVI50 Series	22
TVI58 Series	26
V15-G	100
V15-G-YE2M-PVC	100
V15-G-YE5M-PVC	100
V1-G	100
V1-G-YE2M-PVC	100
V1-G-YE5M-PVC	100